首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid sequence of rat mast cell protease I (chymase)   总被引:8,自引:0,他引:8  
The amino acid sequence has been determined for rat mast cell protease I (RMCP I), a product of peritoneal mast cells. The active enzyme contains 227 residues, including three corresponding to the catalytic triad characteristic of serine protease (His-57, Asp-102, and Ser-195 in chymotrypsin). A computer search for homology indicates 73% and 33% sequence identity of RMCP I with rat mast cell protease II from mucosal mast cells and bovine chymotrypsin A, respectively. When the structure of RMCP I is compared to those of cathepsin G from human neutrophils and two proteases expressed in activated lymphocytes, 48-49% of the sequences are identical in each case. RMCP I has six half-cystine residues at the same positions as in RMCP II, cathepsin G, and the two lymphocyte proteases, suggesting disulfide pairs identical with those reported for RMCP II. A disulfide bond near the active site seryl residue and substrate binding site, present in pancreatic and plasma serine proteases, is not found in RMCP I or in the other cellular proteases. These results indicate that RMCP I and other chymotrypsin-like proteases of granulocyte and lymphocyte origin are more closely related to each other than to the pancreatic or plasma serine proteases.  相似文献   

2.
Amino acid sequence of a mouse mucosal mast cell protease   总被引:11,自引:0,他引:11  
The amino acid sequence has been determined of a mouse mucosal mast cell protease isolated from the small intestines of mice infected with Trichinella spiralis. The active protease contains 226 residues. Those corresponding to the catalytic triad of the active site of mammalian serine proteases (His-57, Asp-102, and Ser-195 in chymotrypsin) occur in identical positions. A computer search for homology indicates 74.3% and 74.1% sequence identity of the mouse mast cell protease compared to those of rat mast cell proteases I and II (RMCP I and II), respectively. The six half-cystine residues in the mouse mast cell protease are located in the same positions as in the rat mast cell proteases, cathepsin G, and the lymphocyte proteases, suggesting that they all have identical disulfide bond arrangements. At physiological pH, the mouse and rat mucosal mast cell proteases have net charges of +3 and +4, respectively, as compared to +18 for the protease (RMCP I) from rat connective tissue mast cells. This observation is consistent with the difference in solubility between the mucosal and connective tissue mast cell proteases when the enzymes are extracted from their granules under physiological conditions.  相似文献   

3.
Protease IV is a lysine-specific endoprotease produced by Pseudomonas aeruginosa whose activity has been correlated with corneal virulence. Comparison of the protease IV amino acid sequence to other bacterial proteases suggested that amino acids His-72, Asp-122, and Ser-198 could form a catalytic triad that is critical for protease IV activity. To test this possibility, site-directed mutations by alanine substitution were introduced into six selected residues including the predicted triad and identical residues located close to the triad. Mutations at any of the amino acids of the predicted catalytic triad or Ser-197 caused a loss of enzymatic activity and absence of the mature form of protease IV. In contrast, mutations at His-116 or Ser-200 resulted in normal processing into the enzymatically active mature form. A purified proenzyme that accumulated in the His-72 mutant was shown in vitro to be susceptible to cleavage by protease IV purified from P. aeruginosa. Furthermore, similarities of protease IV to the lysine-specific endoprotease of Achromobacter lyticus suggested three possible disulfide bonds in protease IV. These results identify the catalytic triad of protease IV, demonstrate that autodigestion is essential for the processing of protease IV into a mature protease, and predict sites essential to enzyme conformation.  相似文献   

4.
Human rhinoviruses, like other picornaviruses, encode a cysteine protease (designated 3C) which cleaves mainly at viral Gln-Gly pairs. There are significant areas of homology between picornavirus 3C cysteine proteases and cellular serine proteases (e.g. trypsin), suggesting a functional relationship between their catalytic regions. To test this functional relationship, we made single substitutions in human rhinovirus type 14 protease 3C at seven amino acid positions which are highly conserved in the 3C proteases of animal picornaviruses. Substitutions at either His-40, Asp-85, or Cys-146, equivalent to the trypsin catalytic triad His-57, Asp-102, and Ser-195, respectively, completely abolished 3C proteolytic activity. Single substitutions were also made at either Thr-141, Gly-158, His-160, or Gly-162, which are equivalent to the trypsin specificity pocket region. Only the mutant with a conservative Thr-141 to Ser substitution exhibited proteolytic activity, which was much reduced compared with the parent. These results, together with immunoprecipitation data which indicate that Asp-85, Thr-141, and Cys-146 lie in accessible surface regions, suggest that the catalytic mechanism of picornavirus 3C cysteine proteases is closely related to that of cellular trypsin-like serine proteases.  相似文献   

5.
Crystal structures of two engineered thiol trypsins   总被引:3,自引:0,他引:3  
We have determined the three-dimensional structures of engineered rat trypsins which mimic the active sites of two classes of cysteine proteases. The catalytic serine was replaced with cysteine (S195C) to test the ability of sulfur to function as a nucleophile in a serine protease environment. This variant mimics the cysteine trypsin class of thiol proteases. An additional mutation of the active site aspartate to an asparagine (D102N) created the catalytic triad of the papain-type cysteine proteases. Rat trypsins S195C and D102N,S195C were solved to 2.5 and 2.0 A, respectively. The refined structures were analyzed to determine the structural basis for the 10(6)-fold loss of activity of trypsin S195C and the 10(8)-fold loss of activity of trypsin D102N,S195C, relative to rat trypsin. The active site thiols were found in a reduced state in contrast to the oxidized thiols found in previous thiol protease structures. These are the first reported structures of serine proteases with the catalytic centers of sulfhydryl proteases. Structure analysis revealed only subtle global changes in enzyme conformation. The substrate binding pocket is unaltered, and active site amino acid 102 forms hydrogen bonds to H57 and S214 as well as to the backbone amides of A56 and H57. In trypsin S195C, D102 is a hydrogen-bond acceptor for H57 which allows the other imidazole nitrogen to function as a base during catalysis. In trypsin D102N,S195C, the asparagine at position 102 is a hydrogen-bond donor to H57 which places a proton on the imidazole nitrogen proximal to the nucleophile. This tautomer of H57 is unable to act as a base in catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
G J Arlaud  J Gagnon 《Biochemistry》1983,22(8):1758-1764
The amino acid sequence of human C1-r b chain hs been determined, from sequence analysis performed on fragments obtained by CNBr cleavage, dilute acid hydrolysis, tryptic cleavage of the succinylated protein, and subcleavages by staphylococcal protease. The polypeptide chain contains 242 amino acids (Mr 27 096), and the sequence shows strong homology with other mammalian serine proteases. The histidine, aspartic acid, and serine residues of the active site (His-57, Asp-102, and Ser-195 in bovine chymotrypsinogen) are located at positions 39, 94, and 191, respectively. The chain which lacks the "histidine-loop" disulfide bridge, contains five half-cystine residues, of which four (positions 157-176 and 187-217) are homologous to residues involved in disulfide bonds generally conserved in serine proteases, whereas the half-cystine residue at position 114 is likely to be involved in the single disulfide bridge connecting the catalytic b chain to the n-terminal a chain. Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 51 and 118.  相似文献   

7.
The amino acid sequence of a protease, protein C activator, from Agkistrodon contortrix contortrix venom was determined. Peptide fragments obtained by chemical or enzymatic cleavage of the S-carboxymethylated protein were purified by gel filtration and reverse-phase high-performance liquid chromatography. The present study demonstrates that protein C activator from A. contortrix contortrix venom is a trypsin-type serine protease that is composed of 231 residues with a molecular weight of 25,095 for the polypeptide portion of the molecule. By analogy to the mammalian serine proteases, the catalytic triad in venom protein C activator consists of His-40, Asp-85, and Ser-177. The protein also contains three N-linked glycosylation sites at Asn-21, Asn-78, and Asn-129. The amino acid sequence of protein C activator exhibits a high degree of sequence identity with other snake venom proteases: 73% with batroxobin, 68% with flavoxobin, and 55% with Russell's viper venom factor V activator.  相似文献   

8.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

9.
A major protease from human breast cancer cells was previously detected by gelatin zymography and proposed to play a role in breast cancer invasion and metastasis. To structurally characterize the enzyme, we isolated a cDNA encoding the protease. Analysis of the cDNA reveals three sequence motifs: a carboxyl-terminal region with similarity to the trypsin-like serine proteases, four tandem cysteine-rich repeats homologous to the low density lipoprotein receptor, and two copies of tandem repeats originally found in the complement subcomponents C1r and C1s. By comparison with other serine proteases, the active-site triad was identified as His-484, Asp-539, and Ser-633. The protease contains a characteristic Arg-Val-Val-Gly-Gly motif that may serve as a proteolytic activation site. The bottom of the substrate specificity pocket was identified to be Asp-627 by comparison with other trypsin-like serine proteases. In addition, this protease exhibits trypsin-like activity as defined by cleavage of synthetic substrates with Arg or Lys as the P1 site. Thus, the protease is a mosaic protein with broad spectrum cleavage activity and two potential regulatory modules. Given its ability to degrade extracellular matrix and its trypsin-like activity, the name matriptase is proposed for the protease.  相似文献   

10.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, His-75, and Ser-255, is near Cys-253 and represents a conserved feature that distinguishes 3-mercaptopyruvate sulfurtransferases from thiosulfate sulfurtransferases. During catalysis, Ser-255 may polarize the carbonyl group of 3-mercaptopyruvate to assist thiophilic attack, whereas Arg-74 and Arg-185 bind the carboxylate group. The enzyme hydrolyzes benzoyl-Arg-p-nitroanilide, an activity that is sensitive to the presence of the serine protease inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone, which also lowers 3-mercaptopyruvate sulfurtransferase activity, presumably by interference with the contribution of Ser-255. The L. major 3-mercaptopyruvate sulfurtransferase is unusual with an 80-amino acid C-terminal domain, bearing remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. This domain may be involved in mediating protein folding and sulfurtransferase-protein interactions.  相似文献   

11.
Proteases play important roles in parasite life cycles and host-parasite interactions. They are pathogenesis factors of many pathogenic organisms and are hence potential targets for chemotherapeutic treatment of disease. We identified a subtilisin-like serine protease gene, MyxSubtSP, expressed by Myxobolus cerebralis. After PCR with subtilisin-like serine protease primers, the gene was cloned, sequenced and aligned against the NCBI database. Its corresponding amino acid sequence included the putative conserved domains of Peptidase_S8, subtilase family and AprE, subtilisin-like serine proteases. Rapid amplification of 5' and 3' cDNA ends (RACE) was used to generate the full length (1385 bp) gene, with a 429 bp open reading frame. The gene encompasses coding regions for a catalytic triad formed by Asp-74, His-100 and Ser-110.  相似文献   

12.
Type I signal peptidases are integral membrane proteins that function to remove signal peptides from secreted and membrane proteins. These enzymes carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. Site-directed scanning mutagenesis was used to obtain a qualitative assessment of which residues in the fifth conserved region, Box E, of the Escherichia coli signal peptidase I are critical for maintaining a functional enzyme. First, we find that there is no requirement for activity for a salt bridge between the invariant Asp-273 and the Arg-146 residues. In addition, we show that the conserved Ser-278 is required for optimal activity as well as conserved salt bridge partners Asp-280 and Arg-282. Finally, Gly-272 is essential for signal peptidase I activity, consistent with it being located within van der Waals proximity to Ser-278 and general base Lys-145 side-chain atoms. We propose that replacement of the hydrogen side chain of Gly-272 with a methyl group results in steric crowding, perturbation of the active site conformation, and specifically, disruption of the Ser-90/Lys-145 hydrogen bond. A refined model is proposed for the catalytic dyad mechanism of signal peptidase I in which the general base Lys-145 is positioned by Ser-278, which in turn is held in place by Asp-280.  相似文献   

13.
Amino acid sequence of human D of the alternative complement pathway   总被引:4,自引:0,他引:4  
The primary structure of human D, the serine protease activating the C3 convertase of the alternative complement pathway, has been deduced by sequencing peptides derived from various chemical (CNBr and o-iodosobenzoic acid) and enzymatic (trypsin, lysine protease, Staphylococcus aureus V8 protease, and chymotrypsin) cleavages. Carboxypeptidase A was also used to confirm the COOH-terminal sequence. The peptides were purified by high-pressure liquid chromatography. The proposed sequence of human D contains 222 amino acids and has a calculated molecular weight of 23 748. It exhibits a high degree of homology with other serine proteases, especially around the NH2-terminus as well as the three residues corresponding to the active-site His-57, Asp-102, and Ser-195 (chymotrypsinogen numbering). This sequence homology is highest (40%) with plasmin, intermediate (35%) with pancreatic serine proteases, such as elastase, trypsin, chymotrypsin, and kallikrein, and least (30%) with the serum enzymes thrombin and factor X. D, however, exhibits only minimal amino acid homology with the other sequenced complement serine proteases, Clr (25%) and Bb (20%). The substitution of a basic lysine for a neutral amino acid three residues NH2-terminal to the active-site serine as well as a small serine residue for a bulky aromatic amino acid at position 215 (chymotrypsinogen numbering) in the binding pocket may be important in determining the exquisite substrate specificity of D. The presence of His-40 which interacts with Asp-194 (chymotrypsinogen numbering) to stabilize other serine protease zymogens [Freer, S. T., Kraut, J., Robertus, J. D., Wright, H. T., & Xuong, N. H. (1970) Biochemistry 9, 1997] argues in favor of such a D precursor molecule.  相似文献   

14.
Rhomboid proteases have many important biological functions. Unlike soluble serine proteases such as chymotrypsin, the active site of rhomboid protease, which contains a Ser-His catalytic dyad, is submerged in the membrane and surrounded by membrane-spanning helices. Previous crystallographic analyses of GlpG, a bacterial rhomboid protease, and its complex with isocoumarin have provided insights into the mechanism of the membrane protease. Here, we studied the interaction of GlpG with 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate, both mechanism-based inhibitors for the serine protease, and describe the crystal structure of the covalent adduct between GlpG and diisopropyl fluorophosphonate, which mimics the oxyanion-containing tetrahedral intermediate of the hydrolytic reaction. The crystal structure confirms that the oxyanion is stabilized by the main chain amide of Ser-201 and by the side chains of His-150 and Asn-154. The phosphorylation of the catalytic Ser-201 weakens its interaction with His-254, causing the catalytic histidine to rotate away from the serine. The rotation of His-254 is accompanied by further rearrangement of the side chains of Tyr-205 and Trp-236 within the substrate-binding groove. The formation of the tetrahedral adduct is also accompanied by opening of the L5 cap and movement of transmembrane helix S5 toward S6 in a direction different from that predicted by the lateral gating model. Combining the new structural data with those on the isocoumarin complex sheds further light on the plasticity of the active site of rhomboid membrane protease.  相似文献   

15.
Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix alpha4 approximately 10 A below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix alpha5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix alpha5.  相似文献   

16.
The crystal and molecular structure of trypsin at a transiently stable intermediate step during catalysis has been determined by X-ray diffraction methods. Bovine trypsin cleaved the substrate p-nitrophenyl p-guanidinobenzoate during crystallization under conditions in which the acyl-enzyme intermediate, (guanidinobenzoyl)trypsin, was stable. Orthorhombic crystals formed in space group P2(1)2(1)2(1), with a = 63.74, b = 63.54, and c = 68.93 A. This is a crystal form of bovine trypsin for which a molecular structure has not been reported. Diffraction data were measured with a FAST (Enraf Nonius) diffractometer. The structure was refined to a crystallographic residual of R = 0.16 for data in the resolution range 7.0-2.0 A. The refined model of (guanidinobenzoyl)trypsin provides insight into the structural basis for its slow rate of deacylation, which in solution at 25 degrees C and pH 7.4 exhibits a t1/2 of 12 h. In addition to the rotation of the Ser-195 hydroxyl away from His-157, C beta of Ser-195 moves 0.7 A toward Asp-189 at the bottom of the active site, with respect to the native structure. This allows formation of energetically favorable H bonds and an ion pair between the carboxylate of Asp-189 and the guanidino group of the substrate. This movement is dictated by the rigidity of the aromatic ring in guanidinobenzoate--model-building indicates that this should not occur when arginine, with its more flexible aliphatic backbone, forms the ester bond with Ser-195. As a consequence, highly ordered water molecules in the active site are no longer close enough to the scissile ester bond to serve as potential nucleophiles for hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A chemical modification approach was used in this study to identify the active site serine residue of human pancreatic lipase. Purified human pancreatic lipase was covalently modified by incubation with [3H], [14C] tetrahydrolipstatin (THL), a potent inhibitor of pancreatic lipase. The radiolabeled lipase was digested with thermolysin, and the peptides were separated by HPLC. A single THL-peptide-adduct was obtained which was identical to that obtained earlier from porcine pancreatic lipase. This pentapeptide with the sequence VIGHS is covalently bound to a THL molecule via the side chain hydroxyl group of the serine unit corresponding to Ser-152 of the lipase. The selective cleavage of the THL-serine bond by mild acid treatment resulted in the formation of the delta-lactone Ro 40-4441 in high yield and clearly proves that THL is attached via an ester bond and with retention of stereochemistry at all chiral centers to the side chain hydroxyl group of Ser-152 of the lipase. The results obtained for human pancreatic lipase corroborate the inhibition mechanism of THL found on the porcine enzyme, and are in full agreement with the identification of the Ser-152 ... His-263 ... Asp-176 catalytic triad in the X-ray structure of human pancreatic lipase.  相似文献   

18.
The 2.8 A (1 A = 0.1 nm) resolution structure of the crystalline orthorhombic form of the microbial serine protease Streptomyces griseus protease B (SGPB) has been solved by the method of multiple isomorphous replacement using five heavy-atom derivatives. The geometrical arrangement of the active site quartet, Ser-214, Asp-102, His-57, and Ser-195, is similar to that found for pancreatic alpha-chymotrypsin. SGPB and alpha-chymotrypsin have only 18% identity of primary structure but their tertiary structures are 63% topologically equivalent within a root mean square deviation of 2.07 A. The major tertiary structural differences between the bacterial enzyme SGPB and the pancreatic enzymes is due to the zymogen requirement of the multicellular organisms in order to protect themselves against autolytic degradation. The two pronase enzymes, SGPB and Streptomyces griseus protease A (SGPA), have 61% identity of sequence and their tertiary structures are 85% topologically equivalent within a root mean square deviation of 1.46 A. The active site regions of SGPA and SGPB are similar and their tertiary structures differ only in three minor regions of surface loops.  相似文献   

19.
The three-dimensional structure of duodenase, a serine protease from bovine duodenum mucosa, has been determined at 2.4A resolution. The enzyme, which has both trypsin-like and chymotrypsin-like activities, most closely resembles human cathepsin G with which it shares 57% sequence identity and similar specificity. The catalytic Ser195 in duodenase adopts the energetically favored conformation typical of serine proteinases and unlike the strained state typical of lipase/esterases. Of several waters in the active site of duodenase, the one associated with Ser214 is found in all serine proteinases and most lipase/esterases. The conservation of the Ser214 residue in serine proteinase, its presence in the active site, and participation in a hydrogen water network involving the catalytic triad (His57, Asp107, and Ser195) argues for its having an important role in the mechanism of action. It may be referred to as a fourth member of the catalytic triad. Duodenase is one of a growing family of enzymes that possesses trypsin-like and chymotrypsin-like activity. Not long ago, these activities were considered to be mutually exclusive. Computer modeling reveals that the S1 subsite of duodenase has structural features compatible with effective accommodation of P1 residues typical of trypsin (Arg/Lys) and chymotrypsin (Tyr/Phe) substrates. The determination of structural features associated with functional variation in the enzyme family may permit design of enzymes with a specific ratio of trypsin and chymotrypsin activities.  相似文献   

20.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号