首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plant hormone auxin (indole-3-acetic acid, IAA) appears to control many plant developmental processes, and studies performed in seed plants suggest that IAA conjugation is the critical mechanism to regulate free IAA concentration. The purpose of this investigation is to characterize the biochemical ability of one charophyte and 23 land plants ranging from liverworts to angiosperms to produce IAA conjugates, and to study the complexity of their conjugation patterns. Actively growing tissue was incubated with 14C-IAA, after which labeled IAA conjugates were separated using thin-layer chromatography. The conjugates were analyzed using radioimaging techniques and their tentative identity assigned by co-chromatography and/or by differential hydrolysis. The charophyte and the liverworts appear unable to conjugate IAA. The mosses and the hornwort are able to conjugate IAA into a few amide and ester conjugates. The tracheophytes examined synthesize several conjugates unique to the vascular plants, indole-3-acetyl-aspartic acid (-glutamic acid) and/or indole-3-acetyl-β-1-O-glucose, as well as a variety of other amide and ester conjugates. These three conjugation patterns are correlated to the type of conducting tissue characteristic of the plants analyzed. These biochemical differences may be indicative of significative differences in the hormonal regulation in these plant groups, thus suggesting that changes in IAA regulation accompanied the major evolutionary events in land plants.  相似文献   

2.
Transgenic plants overproducing indole-3-acetic acid (IAA) from expression of the Agrobacterium tumefaciens T-DNA IAA biosynthesis genes were used to study the conjugation of IAA. At the 11-node stage, free IAA, as well as ester- and amide-conjugated IAA, was analyzed in wild-type tobacco SR1 and in transgenic plants denoted 35S-iaaM/iaaH (line C) and 35S-iaaM x 35S-iaaH (line X). The transgenic plants contained increased levels of both free and conjugated IAA, and the main increase in IAA conjugates occurred in amide conjugates. Two amide conjugates were identified by fritfast atom bombardment liquid chromatography-mass spectrometry as indole-3-acetylaspartic acid (IAAsp) and indole-3-acetylglutamic acid (IAGlu), and one ester conjugate was identified as indole-3-acetylglucose. IAAsp and IAGlu were also identified as endogenous substances in wild-type plants. In wild-type plants, the percent of total IAA in the free form was significantly higher in young leaves (73 [plus or minus] 7%, SD) than in old leaves (36 [plus or minus] 8%), whereas there was no difference between young (73 [plus or minus] 8%) and old internodes (70 [plus or minus] 9%). In IAA-overproducing transformants, both free and conjugated IAA levels were increased, but the percent free IAA was maintained constant (57 [plus or minus] 10%) for both leaves and internodes, independent of the total IAA level or tissue age. These results suggest that synthesis or transport of IAA conjugates is regulated in the vegetative wild-type plant, and that different organs possess a unique balance between free and conjugated IAA. The IAA-overproducing plant, however, acquires a lower proportion of free IAA in the stem and younger leaves, presumably determined by a higher conjugation in those tissues compared with wild type.  相似文献   

3.
We investigate phylogenetic relationships among hornworts, liverworts and mosses, and their relationships to other green plant groups, by analysis of nucleotide variation in complete 18s rRNA gene sequences of three green algae, two hornworts, seven liverworts, nine mosses, and six tracheophytes. Parsimony and maximum-likelihood analyses yield a single optimal tree in which the hornworts are resolved as the basal group among land plants, and the liverworts and mosses are sister taxa that together form the sister clade to the tracheophytes. This phylogeny is internally robust as indicated by decay indices and by comparison (using both parsimony and likelihood criteria) to topologies representing five alternative hypotheses of bryophyte relationships. We discuss some possible reasons for differences between the phylogeny inferred from the rRNA data and those inferred from other character sets.  相似文献   

4.
Plants can regulate levels of the auxin indole-3-acetic acid (IAA) by conjugation to amino acids or sugars, and subsequent hydrolysis of these conjugates to release active IAA. These less active auxin conjugates constitute the majority of IAA in plants. We isolated the Arabidopsis ilr2-1 mutant as a recessive IAA-leucine resistant mutant that retains wild-type sensitivity to free IAA. ilr2-1 is also defective in lateral root formation and primary root elongation. In addition, ilr2-1 is resistant to manganese- and cobalt-mediated inhibition of root elongation, and microsomal preparations from the ilr2-1 mutant exhibit enhanced ATP-dependent manganese transport. We used a map-based positional approach to clone the ILR2 gene, which encodes a novel protein with no predicted membrane-spanning domains that is polymorphic among Arabidopsis accessions. Our results demonstrate that ILR2 modulates a metal transporter, providing a novel link between auxin conjugate metabolism and metal homeostasis.  相似文献   

5.
Conducting tissues and phyletic relationships of bryophytes   总被引:9,自引:0,他引:9  
Internal specialized conducting tissues, if present, are restricted to the gametophytic generation in liverworts while they may occur in both generations in mosses. Conducting tissues are unknown in the anthocerotes. Water-conducting cells (WCCs) with walls perforated by plasmodesma-derived pores occur in the Calobryales and Pallaviciniaceae (Metzgeriales among liverworts and in Takakia among mosses. Imperforate WCCs (hydroids) are present in bryoid mosses. A polarized cytoplasmic organization and a distinctive axial system of microtubules is present in the highly specialized food-conducting cells of polytrichaceous mosses (leptoids) and in less specialized parenchyma cells of the leafy stem and seta in other mosses including Sphagnumn. A similar organization, suggested to reflect specialization in long-distance symplasmic transport of nutrients, also occurs in other parts of the plant in mosses, including rhizoids and caulonemata, and may be observed in thallus parenchyma cells of liverworts. Perforate WCCs in the Calobryales, Metzgeriales and Takakia, and hydroids in bryoid mosses, probably evolved independently Because of fundamental differences in developmental design, homology of any of these cells with tracheids is highly unlikely. Likewise, putative food-conducting of bryophytes present highly distinctive characteristics and cannot be considered homologous with the sieve cells of tracheophytes.  相似文献   

6.
Abstract— Separate cladistic analyses of the green algae, liverworts, and hornworts are presented. Classificatory and evolutionary implications of these analyses, in addition to our previously published cladistic analyses of mosses and the embryophytes as a whole, are discussed. The embryophytes are monophyletic, and are part of a larger monophyletic group that includes some of the green algae (the "charophytes"). Important evolutionary transformations in the early phylogeny of the land plants include: (1) retention of the zygote on the haploid plant (gametophyte), with the sporophyte generation arising de novo by delaying meiosis, (2) independent elaboration of an elongate sporophyte in some liverworts, some hornworts, and in the moss-tracheophyte clade, (3) independent origin of radial (axial) symmetry in the gametophyte in some liverworts and in the moss-tracheophyte clade, (4) independent origin of leaves on the gametophyte in some liverworts and in mosses, and (5) the unique development of a branching sporophyte with multiple sporangia in the tracheophytes.  相似文献   

7.
Indole-3-butyric acid (IBA) was recently identified by GC/MS analysis as an endogenous constituent of various plants. Plant tissues contained 9 ng g?1 fresh weight of free IBA and 37 ng g?1 fresh weight of total IBA, compared to 26 ng g?1 and 52 ng g?1 fresh weight of free and total indole-3-acetic acid (IAA), respectively. IBA level was found to increase during plant development, but never reached the level of IAA. It is generally assumed that the greater ability of IBA as compared with IAA to promote rooting is due to its relatively higher stability. Indeed, the concentrations of IAA and IBA in autoclaved medium were reduced by 40% and 20%, respectively, compared with filter sterilized controls. In liquid medium, IAA was more sensitive than IBA to non-biological degradation. However, in all plant tissues tested, both auxins were found to be metabolized rapidly and conjugated at the same rate with amino acids or sugar. Studies of auxin transport showed that IAA was transported faster than IBA. The velocities of some of the auxins tested were 7. 5 mm h?1 for IAA, 6. 7 mm h?1 for naphthaleneacetic acid (NAA) and only 3. 2 mm h?1 for IBA. Like IAA, IBA was transported predominantly in a basipetal direction (polar transport). After application of 3H-IBA to cuttings of various plants, most of the label remained in the bases of the cuttings. Easy-to-root cultivars were found to absorb more of the auxin and transport more of it to the leaves. It has been postulated that easy-to-root, as opposed to the difficult-to-root cultivars, have the ability to hydrolyze auxin conjugates at the appropriate time to release free auxin which may promote root initiation. This theory is supported by reports on increased levels of free auxin in the bases of cuttings prior to rooting. The auxin conjugate probably acts as a ‘slow-release’ hormone in the tissues. Easy-to-root cultivars were also able to convert IBA to IAA which accumulated in the cutting bases prior to rooting. IAA conjugates, but not IBA conjugates, were subject to oxidation, and thus deactivation. The efficiency of the two auxins in root induction therefore seems to depend on the stability of their conjugates. The higher rooting promotion of IBA was also ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. IAA was converted to IBA by seedlings of corn and Arabidopsis. The Km value for IBA formation was low (approximately 20 μM), indicating high affinity for the substrate. That means that small amounts of IAA (only a fraction of the total IAA in the plant tissues) can be converted to IBA. It was suggested that IBA is formed by the acetylation of IAA with acetyl-CoA in the carboxyl position via a biosynthetic pathway analogous to the primary steps of fatty acid biosynthesis, where acetyl moieties are transferred to an acceptor molecule. Incubation of the soluble enzyme fraction from Arabidopsis with 3H-IBA, IBA and UDP-glucose resulted in a product that was identified tentatively as IBA glucose (IBGIc). IBGIc was detected only during the first 30 min of incubation, showing that it might be converted rapidly to another conjugate.  相似文献   

8.
Ribosomal RNA sequences and cladistic analysis were used to infer a phylogeny for eight bryophyte taxa. Portions of the cytoplasmic large (26S-like) and small (18S-like) subunit ribosomal RNA genes were sequenced for three marchantioid liverworts (Asterella, Conocephalum, and Riccia), three mosses (Atrichum, Fissidens, and Plagiomnium), and two hornworts (Phaeoceros and Notothylas). Cladistic analysis of these data suggests that the hornworts are the sister group to the mosses, the mosses and hornworts form a clade that is sister to the tracheophytes, and the liverworts form a clade sister to the other land plants. These results differ from previous cladistic analyses based on morphology, ultrastructure, and biochemistry, wherein the mosses alone are sister group to the tracheophytes. We conclude that cladistic analysis of molecular data can provide an independent data set for the study of bryophyte phylogeny, but the differences between the molecular and morphological results are a topic for further investigation.  相似文献   

9.
A cladistic approach to the phylogeny of the “Bryophytes”   总被引:1,自引:0,他引:1  
The importance of a cladistic approach in reconstructing the phylogeny of bryophytes is discussed and illustrated by an analysis of the major groups of bryophytes with respect to the tracheophytes and the green algae. The cladistic analysis, using 51 characters taken from the literature, gives the following tentative results: (1) the embryophytes as a whole are monophyletic; (2) the bryophytes (sensu lato) are paraphyletic; (3) the mosses share a more recent common ancestor with the tracheophytes than do the liverworts or hornworts; (4) the hornworts appear to share a more recent common ancestor with the moss-tracheophyte lineage than with the liverworts; however, the existence of several homoplasies makes this placement more problematical; (5) the origin of alternation of generations in the embryophytes, based on out-group comparison with their oogamous, haplontic, algal sister groups, was by progressive elaboration of the primitively epiphytic sporophyte generation; and (6) the presence of vascular tissue (xylem and phloem) can best be interpreted as a synapomorphy of the moss-tracheophyte clade, and tracheids (xylem with ornamented walls) as a synapomorphy of the tracheophytes; therefore, the prevailing designation of “vascular plants” for the tracheophytes alone is inaccurate.  相似文献   

10.
Free and conjugated indole-3-acetic Acid in developing bean seeds   总被引:8,自引:6,他引:2       下载免费PDF全文
The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed.  相似文献   

11.
BackgroundBryophytes represent a very diverse group of non-vascular plants such as mosses, liverworts and hornworts and the oldest extant lineage of land plants. Determination of endogenous phytohormone profiles in bryophytes can provide substantial information about early land plant evolution. In this study, we screened thirty bryophyte species including six liverworts and twenty-four mosses for their phytohormone profiles in order to relate the hormonome with phylogeny in the plant kingdom.MethodologySamples belonging to nine orders (Pelliales, Jungermanniales, Porellales, Sphagnales, Tetraphidales, Polytrichales, Dicranales, Bryales, Hypnales) were collected in Central and Northern Bohemia. The phytohormone content was analysed with a high performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS).ConclusionThe apparent differences in conjugation and/or degradation strategies of growth hormones between liverworts and mosses might potentially show a hidden link between vascular plants and liverworts. On the other hand, the complement of stress hormones in bryophytes probably correlate rather with prevailing environmental conditions and plant survival strategy than with plant evolution.  相似文献   

12.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

13.
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.  相似文献   

14.
Endogenous levels of free and conjugated IAA, auxin protectors (Prs) and peroxidase (PER) activity and their relation to adventitious root initiation (ARI) were investigated at the potential sites of adventitious rooting in relation to exogenous application of 250 μM ABA during the first 120 h after treatment. Cuttings from 7-day-old mung bean [Vigna radiata (L.) Wilcz.] seedlings were treated with 125, 250, and 500 μM ABA for 24 h. ABA significantly stimulated ARI but extremely inhibited epicotyl growth as compared to control. Free and conjugated IAA were measured by reversed-phase high performance liquid chromatography while Prs and PER activities were measured spectrophotometrically. The present results also indicate that endogenous free IAA levels peaked later in ABA-treated cuttings than that in control, suggesting that ABA extended the length of the induction phase of rooting process in treated cuttings and that might explain the significant delay of the appearance of roots at the treated cuttings. Higher level of IAA conjugates was found in ABA-treated cuttings than that in untreated ones. Pr level also peaked later in ABA-treated cuttings than that in control, indicating that ABA extended the period of Pr activity. An initial temporary decrease of PER activity was found in associating with high levels of free IAA and Prs during most of the primary events, while the opposite occurred during the secondary events of adventitious rooting process in both treated and untreated cuttings. Thus, ABA may stimulate ARI in mung bean Vigna radiata cuttings by regulating the concentration and /or activities of endogenous IAA, Prs, and PER activity in favor of inducing a large number of adventitious roots at their potential sites of adventitious rooting.  相似文献   

15.
Indole-3-acetic acid (IAA) is found in plants in both free and conjugated forms. Within the group of conjugated IAA there is a unique class of proteins and peptides where IAA is attached directly to the polypeptide structure as a prosthetic group. The first gene, IAP1, encoding for a protein with IAA as a prosthetic group, was cloned from bean (Phaseolus vulgaris). It was shown that the expression of IAP1 as a major IAA modified protein in bean seed (PvIAP1) was correlated to a developmental period of rapid growth during seed development. Moreover, this protein underwent rapid degradation during germination. Since further molecular analysis was difficult in bean, the IAP1 gene was transformed into Arabidopsis thaliana and Medicago truncatula. Expression of the bean IAP1 gene in both plant species under the control of its native promoter targeted protein expression to the seeds. In Arabidopsis no IAA was found to be attached to PvIAP1. These results show that there is specificity to protein modification by IAA and suggests that protein conjugation may be catalyzed by species specific enzymes. Furthermore, subcellular localization showed that in Arabidopsis PvIAP1 was predominantly associated with the microsomal fraction. In addition, a related protein and several smaller peptides that are conjugated to IAA were identified in Arabidopsis. Further research on this novel class of proteins from Arabidopsis will both advance our knowledge of IAA proteins and explore aspects of auxin homeostasis that were not fully revealed by studies of free IAA and lower molecular weight conjugates.  相似文献   

16.
Bialek K  Cohen JD 《Plant physiology》1992,100(4):2002-2007
We have shown that amide-linked IAA (indole-3-acetic acid) conjugates accumulated to high levels during maturation of bean seeds (K. Bialek and J.D. Cohen [1989] Plant Physiol 91: 775-779). In the present study, we were interested in the fate of these and other IAA conjugates during seed germination. The content of amide-linked conjugates of IAA in cotyledons declined dramatically during the first hours of imbibition. The rate of decline slowed markedly during the period of the resumption of axis growth. The level of amide-linked IAA conjugates in cotyledons remained relatively high after almost 1 week of germination. The decline of IAA conjugates in cotyledons was followed by a steady increase in the content of both free and amide-linked IAA in the embryonic axes. Amide-linked IAA conjugates were also present in the axes cultured on agar after the cotyledons were removed, which suggests that de novo production of these IAA conjugates occurs in the axis of germinating bean seedlings. A comparison of relative amounts of free and conjugated IAA in the axes of intact seedlings and axes cultured on agar showed lower levels of free IAA and higher levels of conjugated IAA in much slower growing isolated axes. These results suggest a more general role for IAA conjugates in the control of seedling growth than simply to serve as a seed storage form of auxin.  相似文献   

17.
18.
Lignins are complex phenolic heteropolymers present in xylem and sclerenchyma cell walls in tracheophytes. The occurrence of lignin-like polymers in bryophytes is controversial. In this study two polyclonal antibodies against homoguaiacyl (G) and guaiacyl/syringyl (GS) synthetic lignin-like polymers that selectively labelled lignified cell walls in tracheophytes also bound to cell walls in bryophytes, the GS antibody usually giving a stronger labelling than the G antibody. In contrast to tracheophytes, the antibody binding in liverworts and mosses was not tissue-specific. In the hornworts Megaceros flagellaris and M. fuegiensis the pseudoelaters and spores were labelled more intensely than the other cell types with the GS antibody. The cell walls in Nitella were labelled with both antibodies but no binding was observed in Coleochaete. The results suggest that the ability to incorporate G or GS moieties in cell walls is a plesiomorphy (primitive character) of the land plant clade.  相似文献   

19.
20.
A microtechnique was developed for the quantification of indole-3-acetic acid (IAA) in plant samples of one milligram fresh weight or less. The method permitted quantification of both free and conjugated IAA using a benchtop gas chromatograph-mass spectrometer. New methods for sample purification with high recovery at microscale levels, together with simple changes that result in enhanced sensitivity of the instrumentation, allowed for a significant reduction in the amount of plant material required for analysis. Single oat (Avena sativa L.) coleoptile tips could be studied with this method and were found to contain free and total IAA levels of 137 and 399 pg · mg−1 fresh weight, respectively. A single 5-d-old Arabidopsis thaliana (L.) Heynh. seedling was shown to contain 61 pg · mg−1 fresh weight free IAA and 7850 pg · mg−1 fresh weight of total IAA following basic hydrolysis. This microtechnique provides a way to accurately measure IAA levels in very small structures and individual seedlings, thus making it a valuable research tool for elucidating the role and distribution of auxin in relation to growth and development. Received: 1 May 1994 / Accepted: 25 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号