首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aim To examine the relationship between diadromy and dispersal ability in New Zealand’s freshwater fish fauna, and how this affects the current environmental and geographic distributions of both diadromous and non‐diadromous species. Location New Zealand. Methods Capture data for 15 diadromous and 15 non‐diadromous fish species from 13,369 sites throughout New Zealand were analysed to establish features of their geographic ranges. Statistical models were used to determine the main environmental correlates of species’ distributions, and to establish the environmental conditions preferred by each species. Environmental predictors, chosen for their functional relevance, were derived from an extensive GIS database describing New Zealand’s river and stream network. Results In terms of geography, most diadromous species occur in a scattered fashion throughout extensive geographic ranges, and occupy large numbers of catchments of widely varying size. By contrast, most non‐diadromous species show relatively high levels of occupancy of smaller geographic ranges, and most are restricted to a few large catchments, particularly in the eastern South Island. In terms of environment, there is marked separation of diadromous from non‐diadromous species, with diadromous species generally caught most frequently in low‐gradient coastal rivers and streams with warm, maritime climates. With a few notable exceptions, most diadromous species have lower occurrence in river segments that are located above obstacles to upstream migration. Non‐diadromous species are usually caught in inland rivers and streams with cool, strongly seasonal climates, typified by a low frequency of high‐intensity rainfall events. Main conclusions We interpret the contrasting biogeographies of New Zealand’s diadromous and non‐diadromous species as reflecting interaction between their marked differences in dispersal ability and a landscape that is subject to recurrent, often large‐scale, natural disturbance. While both groups are likely to be equally susceptible to local, disturbance‐driven extinction, the much greater dispersal ability of diadromous species has allowed them to persist over wide geographic ranges. By contrast, the distributions of most non‐diadromous species are concentrated in a few large catchments, mostly in regions where less intense natural disturbance regimes are likely to have favoured their survival.  相似文献   

2.
Early responses to incursions of non‐indigenous species (NIS) into new areas include modelling and surveillance to define the organisms’ potential and actual distributions. For well‐studied invasive species, predictive models can be developed based on quantitative data describing environmental tolerances. In late 2004, an invasive freshwater diatom Didymosphenia geminata, an NIS for which we had no such quantitative data, was detected in a New Zealand river. We describe a procedure used to rapidly develop a classification of suitability for all New Zealand's rivers, based on two sources of information. First, from a review of the limited available literature and unpublished data, we determined that temperature, hydrological and substrate stability, light availability, and water pH were the most important environmental gradients determining D. geminata's broad‐scale distribution and capacity for establishing and forming blooms in rivers. The second information source was a GIS‐based river network developed for a national classification of New Zealand's rivers, with associated data describing environmental characteristics of each section of the network. We used six variables that were available for every section of the network as surrogates for the environmental gradients that determine suitability. We then determined the environmental distance of all the river sections in the network from our assessment of the optimal conditions conducive to D. geminata blooms. The analysis suggested that > 70% of New Zealand's river sections (stream order > 3) fell into the two highest suitability categories (on a five‐point scale). At the time of writing, D. geminata had spread to 12 catchments, all of which were within these two categories. The technique is applicable in initial responses to incursions of NIS where quantitative information is limited, and makes optimal use of available qualitative information. Our assessment contributed to evaluations of the potential ecological, social, and economic impacts of D. geminata and is currently being used to stratify site selection for ongoing surveillance.  相似文献   

3.
1. We used stream fish and decapod spatial occurrence data extracted from a national database and recent surveys with geospatial landuse data, geomorphologic, climatic, and spatial data in a geographical information system (GIS) to model fish and decapod occurrence in the Wellington Region, New Zealand. 2. To predict the occurrence of each species at a site from a common set of predictor variables we used a multi‐response, artificial neural network (ANN), to produce a single model that predicted the entire fish and decapod assemblage in one procedure. 3. The predictions from the ANN using this landscape scale data proved very accurate based on evaluation metrics that are independent of species abundance or probability thresholds. The important variables contributing to the predictions included the latitudinal and elevational position of the site reach, catchment area, average air temperature, the vegetation type, landuse proportions of the catchment, and catchment geology. 4. Geospatial data available for the entire regional river network were then used to create a habitat‐suitability map for all 14 species over the regional river network using a GIS. This prediction map has many potential uses including: monitoring and predicting temporal changes in fish communities caused by human activities and shifts in climate, identifying areas in need of protection, biodiversity hotspots, and areas suitable for the reintroduction of endangered or rare species.  相似文献   

4.
Environmental factors, such as local physico-chemical water parameters, habitat-structural conditions, geography and human disturbances can have a profound impact on the structure and composition of biotic communities. This study investigates the relationship of these factors with fish diversity in medium to small streams in Central India and identifies the key determinants of species richness and diversity in habitats increasingly facing impacts of urban development. Data on fish diversity on eighteen sites, representative of undisturbed and disturbed aquatic habitats, located in the Narmada river basin were collected across different seasons over two years. Seasonal patterns of alpha diversity for this region were analysed and the effect of environmental drivers on seasonal patterns of alpha diversity were assessed. Analyses of species data revealed significant differences in diversity patterns across seasons for both species richness and Shannon diversity. Results of generalized linear mixed models showed that along with disturbance, altitude and substrate heterogeneity, dissolved oxygen, pH and stream width proved to be important environmental variables that predict species richness. Further, variations in pH, dissolved oxygen, temperature, stream width, stream depth and stream width heterogeneity were found to also predict Shannon diversity index. Our study revealed that seasonal changes across the year play a crucial role in shaping diversity patterns. This study is relevant as an important step in identifying roles of various ecological factors driving fish diversity in the region and towards developing long term management plans for critical catchment areas of major rivers in tropical systems.  相似文献   

5.
6.
7.
8.
9.
1. Despite wide recognition that fish assemblages are influenced by factors operating over a range of spatial scales, little effort has been devoted to quantifying large‐scale variation and the multiscale dependencies of assemblage patterns and processes. This is particularly true for Mediterranean streams, where seasonally predictable drying‐up may lead to a strong association between assemblage attributes and large‐scale factors affecting the distribution of population sources and extinction likelihood. 2. The contribution of large‐scale factors to stream fish assemblage variation was quantified across a Mediterranean landscape, in south‐west Portugal. Fish abundance and species composition were estimated at 166 sites across third‐ to sixth‐order streams, in March–July 1998. Variance partitioning by redundancy analyses was used to analyse assemblage variation against three sets of predictor variables: environmental (catchment position, and geomorphic and hydrological factors), large‐scale spatial trends and neighbourhood effects. 3. Environmental variables and spatial trends accounted for 34.6% of the assemblage variation across the entire region, and for 36.6 and 57.8% within the two largest catchments (Mira and Seixe). Neighbourhood effects were analysed at the catchment scale, increasing the explained variation to 56.1% (Mira) and 70.7% (Seixe). 4. A prevailing environmental gradient was reflected in an increase in the abundance of all species and size‐classes in relation to catchment position, with more fish present in larger streams and in downstream reaches. Variables describing geomorphic and hydrological settings were less important in explaining assemblage variation. 5. Spatial trends always accounted for the smallest fraction of assemblage variation, and they were probably associated with historical barriers to fish dispersal. The strong neighbourhood effects may be related to spatially autocorrelated habitat conditions, but they are also a likely consequence of fish emigration/extinction and colonisation processes. 6. These results emphasise that a substantial proportion of fish assemblage variation in Mediterranean streams may be explained by large‐scale factors, irrespective of microhabitats and local biotic interactions. It is suggested that this pattern results to a large extent from the seasonal drying‐up, with the summer shortage of surface water limiting fish occurrence in headwaters, and consequently the key core areas for fish concentrating in larger streams and tributaries adjacent to large streams because of neighbourhood effects.  相似文献   

10.
Are alien fish a reliable indicator of river health?   总被引:10,自引:0,他引:10  
1. The ability of many introduced fish species to thrive in degraded aquatic habitats and their potential to impact on aquatic ecosystem structure and function suggest that introduced fish may represent both a symptom and a cause of decline in river health and the integrity of native aquatic communities. 2. The varying sensitivities of many commonly introduced fish species to degraded stream conditions, the mechanism and reason for their introduction and the differential susceptibility of local stream habitats to invasion because of the environmental and biological characteristics of the receiving water body, are all confounding factors that may obscure the interpretation of patterns of introduced fish species distribution and abundance and therefore their reliability as indicators of river health. 3. In the present study, we address the question of whether alien fish (i.e. those species introduced from other countries) are a reliable indicator of the health of streams and rivers in south‐eastern Queensland, Australia. We examine the relationships of alien fish species distributions and indices of abundance and biomass with the natural environmental features, the biotic characteristics of the local native fish assemblages and indicators of anthropogenic disturbance at a large number of sites subject to varying sources and intensities of human impact. 4. Alien fish species were found to be widespread and often abundant in south‐eastern Queensland rivers and streams, and the five species collected were considered to be relatively tolerant to river degradation, making them good candidate indicators of river health. Variation in alien species indices was unrelated to the size of the study sites, the sampling effort expended or natural environmental gradients. The biological resistance of the native fish fauna was not concluded to be an important factor mediating invasion success by alien species. Variation in alien fish indices was, however, strongly related to indicators of disturbance intensity describing local in‐stream habitat and riparian degradation, water quality and surrounding land use, particularly the amount of urban development in the catchment. 5. Potential confounding factors that may influence the likelihood of introduction and successful establishment of an alien species and the implications of these factors for river bioassessment are discussed. We conclude that the potentially strong impact that many alien fish species can have on the biological integrity of natural aquatic ecosystems, together with their potential to be used as an initial basis to find out other forms of human disturbance impacts, suggest that some alien species (particularly species from the family Poeciliidae) can represent a reliable ‘first cut’ indicator of river health.  相似文献   

11.
Stream fishes are restricted to specific environments with appropriate habitats for feeding and reproduction. Interactions between streams and surrounding landscapes influence the availability and type of fish habitat, nutrient concentrations, suspended solids, and substrate composition. Valley width and gradient are geomorphological variables that influence the frequency and intensity that a stream interacts with the surrounding landscape. For example, in constrained valleys, canyon walls are steeply sloped and valleys are narrow, limiting the movement of water into riparian zones. Wide valleys have long, flat floodplains that are inundated with high discharge. We tested for differences in fish assemblages with geomorphology variation among stream sites. We selected rivers in similar forested and endorheic ecoregion types of the United States and Mongolia. Sites where we collected were defined as geomorphologically unique river segments (i.e., functional process zones; FPZs) using an automated ArcGIS‐based tool. This tool extracts geomorphic variables at the valley and catchment scales and uses them to cluster stream segments based on their similarity. We collected a representative fish sample from replicates of FPZs. Then, we used constrained ordinations to determine whether river geomorphology could predict fish assemblage variation. Our constrained ordination approach using geomorphology to predict fish assemblages resulted in significance using fish taxonomy and traits in several watersheds. The watersheds where constrained ordinations were not successful were next analyzed with unconstrained ordinations to examine patterns among fish taxonomy and traits with geomorphology variables. Common geomorphology variables as predictors for taxonomic fish assemblages were river gradient, valley width, and valley slope. Significant geomorphology predictors of functional traits were valley width‐to‐floor width ratio, elevation, gradient, and channel sinuosity. These results provide evidence that fish assemblages respond similarly and strongly to geomorphic variables on two continents.  相似文献   

12.
1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait–environment relationships and functional diversity of stream fish assemblages in the Río Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape‐scale (e.g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait–environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change.  相似文献   

13.
1. Effective tools are needed to measure the ‘health’ of rivers at scales large enough to be useful for management. Indicators for assessing the complex of variables that constitutes river health need to be ecologically based, efficient, rapid and consistently applicable in different ecological regions. 2. A large-scale survey of rivers in New South Wales, Australia provided data to test the Index of Biotic Integrity (IBI). The IBI employs the fish-community attributes, identified using regional and river-size data, expected for a river reach of excellent environmental quality. It uses metrics based on species richness, abundance, community structure and the health of individual fish. IBI metrics were established to suit a relatively low-diversity and unspecialized freshwater fish fauna in south-eastern Australia, totalling 55 species. 3. The IBI was able to discriminate between relative levels of environmental quality within a diverse set of stream systems and four presumptive ecological regions. The index was validated by testing the repeatability of scores, and by comparison of IBI scores at eighty sites with an independent measure of potential catchment condition, the River Disturbance Index. 4. Assessments of metric performance showed that eleven of the twelve metrics contributed satisfactorily. One metric based on trophic guild performed poorly and should be deleted from the index. Six other recommendations are made to enhance the performance of the IBI. 5. Results show that, while all large rivers have been disturbed, rivers in the Murray region and those in many coastal montane areas are particularly degraded. 6. The IBI results presented here demonstrate a validated method for large-scale monitoring of river health based on a fish fauna of limited diversity, in the absence of suitable reference sites.  相似文献   

14.
Incised river channels are dynamic components of fluvial systems, represent geomorphic degradation, and are encountered worldwide. Ecological effects of incision can be far‐reaching, affecting habitat availability and channel processes. Although incision can reflect habitat degradation, some studies suggest that important in‐stream habitats do not differ with the degree of incision. Therefore, we tested whether in‐stream habitat variables that are important to imperiled fishes differ in river reaches with varying degrees of incision. Because incision (measured using entrenchment ratio) had no discernable effect on in‐stream habitat characteristics (i.e., proportion fines, gravel, cobble, and macrophyte occurrence and length), we expanded our analysis to assess the effects of 29 additional geomorphic variables on in‐stream habitat. These analyses indicated that bank height, bed mobility, D84, cross‐sectional area, bankfull width, and wetted perimeter accounted for 42% of macrophyte occurrence and 64% of macrophyte length variance. Postflood surveys indicated that macrophyte occurrence on cobble declined as bank height and bed mobility increased, and sediment size decreased, suggesting that sediment size and bed mobility have a stronger influence on in‐stream habitat than incision. Although channel incision often indicates environmental degradation, important aspects of habitat are not described by this measurement. Strategies that depend on incision to identify restoration sites may have limited habitat benefits in Southeastern Piedmont streams and rivers. Instead, landscape or shoal‐scale restoration approaches that increase coarse sediment proportions may increase macrophyte occurrence, length, and persistence. Sediment budgets that identify coarse and fine sediment sources and transport may be useful to prioritize restoration approaches.  相似文献   

15.
  1. Mechanisms driving patterns of occurrence and co-occurrence among North American freshwater fishes are poorly understood. In particular, the influence of biotic interactions on coexistence among stream reaches and their effects on regional species distribution patterns is not well understood for congeneric headwater fishes.
  2. Occupancy models provide a useful framework for examining patterns of co-occurrence while also accounting for imperfect detection. Occupancy models may be extended to test for evidence that a dominant species influences the occurrence of a subordinate species and thus evaluate support for the hypothesis that species interactions drive patterns of coexistence.
  3. We examined patterns of occurrence and co-occurrence at the stream-reach scale among three species of darters (Percidae: Etheostomatinae) that occupy headwater streams within a Gulf Coastal Plain drainage in the south-eastern U.S.A. We assessed species occurrences at 97 sites in first- to third-order streams on one occasion each and used data from four sub-reaches sampled with equal effort at each site to estimate species-specific detection probabilities. Following sampling, a suite of habitat variables was collected at three equidistant points along each of the three transects established within a sub-reach. Coarse (stream-segment, catchment, network) scale variables were also incorporated using geospatial data. Single-species and two-species occupancy models were used to examine patterns of occupancy and coexistence.
  4. The occupancy of each species was influenced by distinct habitat variables. Goldstripe darters (Etheostoma parvipinne) were constrained by a stream size gradient, groundwater input appeared to influence the occurrence of Yazoo darters (Etheostoma raneyi), and local habitat heterogeneity (e.g. variation in depth and current velocity) appeared to influence the occupancy of redspot darters (Etheostoma artesiae).
  5. We found no evidence that the presence of one species influenced the occurrence of another within a stream-reach based on two-species occupancy models. Rather, species co-occurrences were best explained as independent occurrences within a stream-reach according to species-specific habitat associations.
  6. Occupancy modelling may provide a suitable framework for evaluating the influence of biotic interactions among congeneric stream fishes along species-specific habitat gradients at the stream reach scale. Our study offers insight into how habitat variation can influence coexistence of potential competitors across a large river system.
  相似文献   

16.
1. The composition of freshwater invertebrate assemblages at a location is determined by a range of physico‐chemical and biotic factors in the local environment, as well as larger‐scale spatial factors such as sources of recruits. We assessed the relative importance of the species composition of local neighbourhoods and proximal environmental factors on the composition of invertebrate assemblages. 2. Macroinvertebrate assemblages were sampled at 188 running‐water sites in the catchment of the River Rede, north‐east England. A total of 176 species were recorded. 3. Environmental data, in the form of 13 biotic and abiotic measurements that described stream physical structure, aquatic vegetation and water characteristics, were recorded for each site. Detrended correspondence analysis was then used to simplify nine of these stream environmental variables to create an index of stream structure. 4. The species composition of the invertebrate assemblages was related to the environmental variables, using an information theoretic approach. The impact of the species composition of neighbouring sites on each site was determined using Moran's I and autoregressive modelling techniques. 5. Species composition was primarily associated with water pH and stream structure. The importance of the species composition of neighbouring sites in determining local species assemblages differed markedly between taxa. The autoregressive component was low for Coleoptera, intermediate for Trichoptera and Plecoptera, and high for Ephemeroptera. 6. We hypothesise that the observed differences in the autoregressive component amongst these orders reflects variation in their dispersal abilities from neighbouring sites.  相似文献   

17.
18.
In southwestern British Columbia (BC, Canada) and within a relatively small geographic area, lotic environments range from streams in coastal rainforests, to streams in arid continental grasslands, to very large rivers. Little is known about the invertebrate communities in large rivers in general, or in the streams of continental BC. The purpose of this study was to determine whether the benthic invertebrate community structure changes spatially between small coastal and small interior streams; between small streams versus large rivers; and whether changes in the benthic community are related to the environmental conditions. Kicknet samples and environmental data were collected from three coastal streams, three continental streams and two large rivers (discharge of 781 and 3620 m3/s, respectively). The large river sites had low invertebrate abundance, species richness and diversity, relative to the small streams. The coastal streams had the highest species richness and the continental streams had the highest invertebrate abundance. A number of taxa were specific to each class of stream. Invertebrate abundance decreased with river size, and increased with elevation, pH, conductivity, alkalinity, NO2NO3-N, total Kejldahl nitrogen and percent carbon in suspended solids.  相似文献   

19.
The nature of spatial autocorrelation of biota may reveal much about underlying ecological and biological factors responsible for producing those patterns, especially dispersal processes (drift, adult flight, etc.). We report here on assemblage‐level autocorrelation in the benthic‐invertebrate assemblages (retained in sieves of 300 µm mesh) of riffles in two adjacent, relatively pristine rivers in southeastern Victoria, Australia (40‐km reaches of the Wellington and Wonnangatta Rivers). These are related to patterns of autocorrelation in physical and catchment conditions (‘environmental variables’) in the vicinity of the sampling points. Both the invertebrate assemblages and environmental variables were autocorrelated at small scales (= 8 km) in the Wellington River in one of the sampling years (1996). Dissimilarities of invertebrate assemblages were correlated with dissimilarities of environmental variables in both sampling years (1996 and 1997) in that river. Environmental variables were autocorrelated in the Wonnangatta River, but this was not expressed as autocorrelation in the assemblages of invertebrates, which were not autocorrelated at any scale studied. Individual environmental variables showed different spatial patterns between the two rivers. These results suggest that individual rivers have their own idiosyncratic patterns and one cannot assume that even similar, geographically adjacent rivers will have the same patterns, which is a difficulty for ecological assessment and restoration.  相似文献   

20.
Null model analyses have greatly improved our understanding of species co‐occurrence. Null model analyses have shown, for example, that cold‐blooded animals show less segregated distributions than warm‐blooded animals. This topic has rarely been studied simultaneously across multiple metacommunities. We analysed data on 10 stream metacommunities (with 10 communities in each metacommunity) of a cold‐blooded animal group, benthic macroinvertebrates, and examined co‐occurrence within five ecological guilds. We found that the segregated species co‐occurrence was not the rule in stream invertebrate guilds. This was evidenced by the finding that only 10% of the 50 guild matrices we analyzed showed significant segregation and no matrices showed significant aggregation in the within‐stream analyses. However, in the across‐streams analysis, all guilds showed significant segregation. We neither found differences in the degree of segregation among the guilds, the degree of species segregation did not increase with overall environmental heterogeneity, and there were no differences in the relationships between species segregation and overall environmental heterogeneity among the guilds. Expanding the spatial extent from single stream metacommunities (i.e. within each stream) to the whole study region (i.e. across the streams) increased significantly segregation in all guilds. Because environmental heterogeneity across streams was much higher than within single streams, overall environmental heterogeneity may nevertheless have effects on species segregation. It also seems that the effects of overall heterogeneity on species segregation were masked by mass effects in the within‐stream analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号