首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reforestation of bottomland hardwood (BLH) forests has occurred within the Lower Mississippi Alluvial Valley (LMAV), USA, to support a wide range of ecosystem services, but especially wildlife habitat enhancement. As ecosystem restoration efforts proceed in BLH ecosystems, managers and policymakers are seeking criteria to evaluate wildlife habitat enhancement goals. Specialist wildlife that evolved within forest ecosystems can be sensitive to the composition, structure, and function of an ecosystem in relation to the system's natural or historical range of variation and thereby serve as indicators of habitat quality. The swamp rabbit (Sylvilagus aquaticus) is a specialist species of BLH forests throughout the LMAV and therefore may be an appropriate indicator species for this ecosystem. To address this, we reviewed peer-reviewed literature to evaluate the utility of swamp rabbits as an indicator species according to three commonly-used criteria: habitat factors defining swamp rabbit relationships to BLH forests, the importance of swamp rabbit habitat to other wildlife, and the efficiency of swamp rabbit monitoring. We conclude that the swamp rabbit is a suitable indicator of wildlife habitat quality in BLH ecosystems in the LMAV because they evolved and remain endemic to the ecosystem, use habitat that integrates desirable characteristics that positively influence wildlife biodiversity, and are easy to monitor routinely.  相似文献   

2.
Summary The emergence of carbon markets has provided a potential source of funding for reforestation projects. However, there is concern amongst ecologists that these markets will promote the establishment of monoculture plantations rather than more diverse restoration plantings, on the assumption that fast‐growing monocultures are likely to store more carbon than restoration plantings. We examined the validity of this assumption for three predominantly rainforest plantation types established in the moist tropical uplands of north‐east Australia: monoculture plantations of native rainforest conifers (n = 5, mean age 13 years); mixed species plantations of rainforest cabinet timber species, rainforest conifers and eucalypts (n = 5, mean age 13 years); and, environmental restoration plantings comprised mostly of a diverse range of rainforest trees (n = 10, mean age 14 years). We found that restoration plantings stored significantly more carbon in above‐ground biomass than monoculture plantations of native conifers (on average, 106 t vs 62 t carbon per ha); and tended to store more carbon than mixed species timber plantations which were intermediate in value (86 t carbon per ha). Carbon stocks were higher in restoration plantings than in monoculture and mixed species plantations for three reasons. First, and most importantly, restoration plantings were more densely stocked than monoculture and mixed species plantations. Second, there were more large diameter trees in restoration plantings than monoculture plantations. Third, the trees used in restoration plantings had a higher average wood density than the conifers used in monoculture plantations. While, on average, wood density was higher in mixed species plantations than restoration plantings, the much higher stocking rate of restoration plantings meant they stored more carbon than mixed species plantations. We conclude that restoration plantings in the moist tropics of north‐east Australia can accumulate relatively high amounts of carbon within two decades of establishment. Comparison with reference rainforest sites suggests that restoration plantings could maintain their high stocking rates (and therefore high biomass) as they develop in future decades. However, because restoration plantings are currently much more expensive to establish than monoculture plantations, restoration plantings are unlikely to be favoured by carbon markets. Novel reforestation techniques and designs are required if restoration plantings are to both provide habitat for rainforest biota and store carbon in biomass at a cost comparable to monoculture plantations.  相似文献   

3.
Despite increasing efforts to re-establish forest cover in landscapes that have been previously cleared, the relative ability of different styles of reforestation to contribute to conservation and support forest biota is poorly known, particularly for invertebrates. We investigated the use of different types of reforested habitat by ground-active rainforest beetle assemblages on land, which had been previously cleared of rainforest, in the tropics and subtropics of eastern Australia. Between five and ten replicate sites within each of five reforestation styles were selected in each region: un-managed regrowth, young mono-species timber plantations, young mixed-species timber plantations, ecological restoration plantings, and old mono-species timber plantations, together with reference sites in pasture and in intact rainforest. Ground-active beetles were sampled using pitfall traps, and assemblages were compared among site-types. In both regions, beetle assemblages in all styles of reforestation were intermediate in species composition between pasture and rainforest. The similarity of beetle assemblages to intact rainforest increased with the age and structural complexity of reforested sites. The most rainforest-like beetle assemblages were from older reforestation sites (38–70 year plantations in tropics, and 30–40 year regrowth in subtropics) and in younger (6–22 years) but floristically and structurally diverse ecological restoration plantings in both regions. Assemblages in younger (5–20 year) sites of regrowth, mono-species timber plantations, and mixed-species timber plantations were more similar to pasture than rainforest. We conclude that achieving high canopy cover and sufficient structural complexity are important factors associated with the restoration of rainforest-like beetle assemblages to reforested sites.  相似文献   

4.
Ecological risk assessment grew from earlier efforts of federalagencies to protect human health from chemical releases. Overthe past several years, the U.S. Environmental Protection Agency(U.S. EPA) adapted the human health paradigm for use in protectingecological end-points, including ecosystems such as the ChesapeakeBay. The Bay restoration effort may be seen as an ecologicalrisk assessment in the sense that the program participants followedthe paradigm developed by U.S. EPA. This analysis of the programand risk assessment process provides an additional perspectiveon the success and efficacy of the Bay restoration efforts.Early efforts to determine the problems in the Bay system targetedhypoxia, habitat deterioration and natural resource degradationfor corrective actions. Additional monitoring and data gatheringrefined and focused program efforts on hypoxia caused by nutrientenrichment. Thus far, the ecological risk paradigm has beeneffectively applied to the Bay clean-up in a general sense.Recent research demonstrates that detailed application of anarrow risk approach will likely fail to include important biologicaleffects or processes  相似文献   

5.
The ecological integrity of Sagebrush ( Artemisia spp.) ecosystems in the Intermountain West (U.S.A.) has been diminished by synergistic relationships among human activities, spread of invasive plants, and altered disturbance regimes. An aggressive effort to restore Sagebrush habitats is necessary if we are to stabilize or improve current habitat trajectories and reverse declining population trends of dependent wildlife. Existing economic resources, technical impediments, and logistic difficulties limit our efforts to a fraction of the extensive area undergoing fragmentation, degradation, and loss. We prioritized landscapes for restoring Sagebrush habitats within the intermountain western region of the United States using geographic information system (GIS) modeling techniques to identify areas meeting a set of conditions based on (1) optimum abiotic and biotic conditions favorable for revegetation of Sagebrush; (2) potential to increase connectivity of Sagebrush habitats in the landscape to benefit wildlife; (3) location of population strongholds for Greater Sage-Grouse ( Centrocercus urophasianus , a species of conservation concern); and (4) potential impediments to successful restoration created by Cheatgrass ( Bromus tectorum , an invasive exotic annual grass). Approximately 5.8 million ha in southwestern Idaho, northern Nevada, and eastern Oregon met our criteria for restoring Wyoming big sagebrush ( Artemisia tridentata ssp. wyomingensis ) and 5.1 million ha had high priority for restoring Mountain big sagebrush ( A. tridentata ssp. vaseyana ). Our results represent an integral component in a hierarchical framework after which site-specific locations for treatments can be focused within high-priority areas. Using this approach, long-term restoration strategies can be implemented that combine local-scale treatments and objectives with large-scale ecological processes and priorities.  相似文献   

6.
This study summarizes US Forest Service Resource Bulletin data to estimate forested wetlands areal changes. The Forest Resource Bulletins used field-data surveys to estimate the area of different forest land plant associations, including those that are typically defined as forested wetlands. The information includes changes since 1940 on national and state levels. These figures may help judge the success of some recent efforts by private and public agencies to protect wetlands.Forested wetland area decreased by about 3 million ha from 1960 to 1990. The percentage of forested wetlands lost (13%) was greater than for forest land (7%) for the past three decades. In the 1980s, Louisiana and North Carolina experienced the greatest losses (178,000 ha and 203,000 ha, respectively). In the same period, Maine, Montana, and South Carolina experienced the largest increases. The area of forested wetlands in the United States decreased over 700,000 ha (0.3%/yr) between 1980 and 1990.Corresponding Editor: R.E. Turner  相似文献   

7.
ABSTRACT State wildlife agencies commonly offer private landowners cost-share and technical assistance to improve habitat, but the cost-effectiveness and long-term outcomes of these efforts are rarely evaluated. In 1998, we began a 3-part, statewide evaluation of the Illinois Department of Natural Resources’ (IDNR; USA) Private Land Wildlife Habitat Management Program (hereafter the program) as it functioned from 1986 to 1996. We sent a mail-back questionnaire to IDNR biologists to collect information on their perceptions of the program. We sent a separate mail-back questionnaire to private landholders who participated in the program to ascertain their demographic profile, motivations for participation, and attitudes regarding the program. We also conducted on-site evaluations of private properties that were managed under the guidance of the program. We conducted our study to 1) assess if the program effectively assisted participants in establishing and maintaining wildlife habitat, and 2) determine factors associated with optimal management of wildlife habitat on private lands to refine the program and improve effectiveness. We found significant differences between participants in their land use priorities and motivations for managing wildlife and in the resources available to participants to establish and maintain habitat. Our results indicate that although financial incentives may increase participation in private lands initiatives, improving technical and material assistance to landholders is essential for maintaining quality wildlife habitat over the long-term.  相似文献   

8.
Despite recent efforts to reforest cleared rainforest landscapes, in Australia and elsewhere, the value of reforested sites for rainforest‐dependent reptiles is unknown. We surveyed the occurrence of reptiles in a range of reforestation types (monoculture and mixed‐species timber plantations, diverse “ecological restoration” plantings and regrowth), as well as reference sites in pasture and rainforest, in tropical and subtropical Australia. We recorded 29 species of reptiles from 104 sites, including 15 rainforest‐dependent species. Most rainforest reptiles were strongly associated with complex microhabitats (tree trunks, logs, rocks). The richness and abundance of rainforest‐dependent reptiles varied between the different types of reforestation and between regions. In the tropics, rainforest reptiles were recorded in old timber plantations and ecological restoration plantings but not in young timber plantations or regrowth. Rainforest reptiles were recorded in few reforested sites in the subtropics. The occurrence of rainforest‐dependent reptiles in reforested sites appears to be influenced by (1) habitat structure; (2) proximity to source populations in rainforest; and (3) biogeography and historical differences in the extent of rainforest. Restoration of cleared land for rainforest‐dependent reptiles may require the development, or deliberate creation, of complex structural attributes and microhabitats in reforested sites. Where reforested sites are located away from rainforest, recolonization by rainforest reptiles may require the construction of corridors of suitable habitat between reforested sites and rainforest or the translocation of reptiles to reforested sites.  相似文献   

9.
In conservation paradigms, management actions for umbrella species also benefit co-occurring species because of overlapping ranges and similar habitat associations. The greater sage-grouse (Centrocercus urophasianus) is an umbrella species because it occurs across vast sagebrush ecosystems of western North America and is the recipient of extensive habitat conservation and restoration efforts that might benefit sympatric species. Biologists' understanding of how non-target species might benefit from sage-grouse conservation is, however, limited. Reptiles, in particular, are of interest in this regard because of their relatively high diversity in shrublands and grasslands where sage-grouse are found. Using spatial overlap of species distributions, land cover similarity statistics, and a literature review, we quantified which reptile species may benefit from the protection of intact sage-grouse habitat and which may be affected by recent (since about 1990) habitat restoration actions targeting sage-grouse. Of 190 reptile species in the United States and Canadian provinces where greater sage-grouse occur, 70 (37%) occur within the range of the bird. Of these 70 species, about a third (11 snake and 11 lizard species) have >10% of their distribution area within the sage-grouse range. Land cover similarity indices revealed that 14 of the 22 species (8 snake and 6 lizard species) had relatively similar land cover associations to those of sage-grouse, suggesting greater potential to be protected under the sage-grouse conservation umbrella and greater potential to be affected, either positively or negatively, by habitat management actions intended for sage-grouse. Conversely, the remaining 8 species are less likely to be protected because of less overlap with sage-grouse habitat and thus uncertain effects of sage-grouse habitat management actions. Our analyses of treatment databases indicated that from 1990 to 2014 there were at least 6,400 treatments implemented on public land that covered approximately 4 million ha within the range of the sage-grouse and, of that, >1.5 million ha were intended to at least partially benefit sage-grouse. Whereas our results suggest that conservation of intact sagebrush vegetation communities could benefit ≥14 reptiles, a greater number than previously estimated, additional research on each species' response to habitat restoration actions is needed to assess broader claims of multi-taxa benefits when it comes to manipulative sage-grouse habitat management. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
Meadow restoration efforts typically involve the modification of stream channels to re‐establish hydrologic conditions necessary for the maintenance of native vegetation. To predict change in the distribution of common meadow plant species in response to meadow restoration, a hydrologic model was loosely coupled to a suite of individual plant species distribution models. The approach was tested on a well‐documented meadow/stream restoration project on Bear Creek, a tributary to the Fall River in northeastern California, U.S.A. We developed a surface‐water and groundwater hydrologic model for the meadow. Vegetation presence and absence data from 170 plots were combined with simulated water‐table depth time series to develop habitat‐suitability models for 11 herbaceous plant species. In each model, the habitat suitability is predicted as a function of growing‐season, water‐table depth, and range. The hydrologic model was used to simulate water‐table depth time series for the pre‐ and post‐restoration conditions. These results were used to predict the spatial distribution of habitat suitability for the 11 herbaceous plant species. Model results indicate that restoration changed water levels throughout the study area, extending well beyond the near‐stream region. Model results also indicate an increase in the spatial distribution of suitable habitat for mesic vegetation and a concomitant decrease in the spatial distribution of suitable habitat for xeric vegetation. The methods utilized in this study could be used to improve setting of objective and performance measures in restoration projects in similar environments, in addition to providing a quantitative, science‐based approach to guide riparian restoration and active revegetation efforts.  相似文献   

11.
US federal conservation programs, including the National Resource Conservation Service’s Wetland Reserve Program (WRP) and the US Fish and Wildlife Service’s Partners for Fish and Wildlife Program (PFWP), partner with private landowners to conserve and restore wetland habitats. Despite the success of these programs in terms of wetland area enrolled, uncertainties exist as to whether they are meeting their stated goals, including the restoration of wildlife habitat. In the St. Lawrence Valley of New York State, we investigated two questions related to WRP and PFWP wetland restorations. First, was whether restorations provide habitat for wetland-associated wildlife, including Species of Greatest Conservation Need (SGCN) prioritized by the New York State Wildlife Action Plan (SWAP). Second, was whether restorations support wildlife assemblages that are comparable to natural reference wetlands. Bird, anuran, turtle, snake, and fish species assemblages were surveyed at 47 WRP and PFWP restorations, and 18 natural reference wetlands. We detected 31 SGCN at restorations, including SGCN from each assemblage surveyed. Assemblage metrics, including species richness and relative abundance, did not differ between restored and reference wetlands for any of the assemblages surveyed. These results indicate that restorations provide habitat for SGCN and other wetland-associated wildlife, and that assemblages at restorations are similar to those at natural reference wetlands. We conclude that WRP and PFWP wetland restorations in this region are meeting federal program-level goals related to the restoration of wildlife habitat, and are contributing to the recovery of SGCN.  相似文献   

12.
13.
Forest restoration efforts in Australia's Wet Tropics establish <100 ha/year, compared with 20‐year average clearing rates of 1661 ha/year. Establishment costs are serious impediments to restoration efforts. Costs range from $25,000 to $67,000/ha, compared with less than $5,000/ha in other areas using other methods. Some of this difference stems from methods used to plant trees. Augered holes are used commonly in environmental plantings, whereas planting spades are used mostly in forestry plantings. To determine the most cost‐effective planting method between auger and spade planting methods, we compared the planting costs and the survival and growth of seedlings of local rainforest species, The speed of planting with a spade is on average four times quicker than with an auger, whereas the survival (range = 89–94%, spade vs auger respectively), and growth (slightly greater height growth for auger planted individuals) rates were only marginally different. Given these results, using planting spades is a cost‐effective alternative to augering holes.  相似文献   

14.
The decline in migratory monarch butterflies (Danaus plexippus) over the past 20 years has been attributed to several drivers, including loss of their host plants (milkweeds Asclepias spp.). This has sparked widespread interest in milkweed ecology and restoration. We developed a model on environmental and habitat‐type variables to predict milkweed abundance by sampling 93 prairie plantings (47 conservation plantings and 46 roadsides) and 5 unplowed prairie remnants throughout the state of Iowa, United States. Milkweeds were censused in 10–25 random locations within each site, and data on plant diversity, age of planting, soil characteristics, and management were tested as predictors of abundance. Milkweed densities of all species combined were highest in remnant prairies (8,705 stems/ha), intermediate in roadside plantings (1,274 stems/ha), and lowest in conservation plantings (212 stems/ha). Most milkweeds were common milkweeds Asclepias syriaca, which were more abundant in roadside than conservation plantings. Remnants contained the most milkweed species. Total milkweed and common milkweed abundance were both predicted by higher soil pH, a more linear site shape, and lower soil bulk density across restorations. Our results indicate that common milkweed is maintained by disturbance, and establishes readily in rural roadside habitat. Remnants are important as reservoirs for multiple milkweed species and should be protected.  相似文献   

15.
The area of degraded forests in Vietnam is substantial, currently about 3.1 million ha of which about 1.7 million ha (55 %) were granted to individual farms for reforestation. However, the result of farmers’ reforestation efforts is limited. We aimed to examine the financial return, technical efficiency, and factors determining reforestation with a native tree species (Canarium album) by farms. Our results showed that reforestation with C. album is less financially profitable than that with an exotic tree species (Acacia mangium) as the alternative land use option. The subsidy from the government is found insufficient to compensate for the income losses of farmers participating in reforestation with the native tree species. Reforestation with C. album could be more successful if participating farmers were equipped to be more technically efficient. Finally, our findings clearly showed that the security of forest land property rights and the provision of forest extension services are among the determinants of participation in, and the subsequent success of reforestation with C. album.  相似文献   

16.
Creating, restoring, and sustaining forests in urban areas are complicated by habitat fragmentation, invasive species, and degraded soils. Although there is some research on the outcomes of urban reforestation plantings during the first 5 years, there is little research on longer term outcomes. Here, we compare the successional trajectories of restored and unrestored forest sites 20 years after initiating restoration. The sites are located within the Rodman's Neck area of Pelham Bay Park, in the northeast corner of the Bronx in New York City (NYC), U.S.A. Compared with unrestored sites, we saw improvements in species diversity, greater forest structure complexity, and evidence of the regeneration and retention of native tree species in restored sites. In addition, we found differences in restoration outcomes depending on the level of intervention: clearing exotic shrubs and vines and planting native trees and shrubs improved tree diversity and canopy closure to a greater extent than clearing exotics alone, and the mechanical removal of invasive plants after the native plantings further improved some measures of restoration, such as tree species diversity and native tree regeneration. The results of this study suggest that the goal of a sustainable forest ecosystem dominated by native trees and other plant species may not be achievable without continued human intervention on site. In addition, these results indicate that the restoration approach adopted by NYC's reforestation practitioners is moving the site toward a more desirable vegetative community dominated by native species.  相似文献   

17.
Abstract Most of the original forest and woodland cover on the western slopes of New South Wales and the northern plains of Victoria has been cleared for agriculture (wheat, sheep and cattle) and what remains is highly fragmented and modified by a long history of disturbance. Over the past three decades, native eucalypt trees and shrubs have been planted extensively in a part of this region to provide a range of environmental benefits. Our aim was to determine the extent to which these plantings could improve biological diversity in agricultural landscapes in south‐eastern Australia and to identify the variables influencing their effectiveness. We sampled birds at 120 sites encompassing the range of available patch sizes, stand ages, floristic and structural conditions, and habitat attributes for revegetated areas and remnants of native vegetation, and we compared these to nearby paddocks. Eucalypt plantings were found to provide significant improvements in bird population density compared with cleared or sparsely treed paddocks, and mixed eucalypt and shrub plantings had similar bird communities to remnant native forest and woodland in the region. Birds displayed a strong response to patch size, with both larger (≥5–20 ha) eucalypt plantings and larger (≥5–20 ha) remnants having more species and more individuals per unit area than smaller (<5 ha) patches of these vegetation types. Older (10–25 years) plantings had more bird species and individuals than young (<10 years) plantings. The distance from remnant forest and woodland (habitat connectivity) appeared to be an important variable influencing bird species richness in eucalypt plantings. The main differences were due to the greater numbers of species classified as woodland‐dependent in the larger‐sized patches of plantings and remnants. Eucalypt plantings provided useful habitat for at least 10 declining woodland‐dependent species, notably for the Speckled Warbler, Red‐capped Robin and Rufous Whistler. The Brown Treecreeper and Dusky Woodswallow appeared to be the species most limited by the extent of remnant forest and woodland in the region. Plantings of all shapes and sizes, especially those larger than 5 ha, have an important role to play in providing habitat for many bird species. Restoration efforts are more likely to be successful if eucalypt plantings are established near existing remnant vegetation.  相似文献   

18.
The global community is seeking to substantially restore the world's forest cover to improve the supply of ecosystem services. However, it is not clear what type of reforestation must be used and there is a risk that the techniques used in industrial timber plantations will become the default methodology. This is unlikely to be sufficient because of the well‐known relationship between biodiversity and ecological functioning. Restoration may be achieved through natural regeneration but this may not always occur at critical locations. Ecological restoration involving species‐rich plantings might also be used but can be difficult to implement at landscape scales. I review here the consequence of planting more limited numbers of species and the effects of this on the delivery of ecosystem services. Evidence suggests many commonly sought ecosystem services—though not all—may be generated by the modest levels of species richness provided these species have appropriate traits. The literature also shows that the alpha diversity of restored forests is not the only driver of functionality and that the location and extent of any reforestation are significant as well; beta and gamma diversity may also affect functionality but these relationships remain unclear. Encouraging the adoption of even moderately diverse plantings at landscape scales and at key locations will require policies and institutions to balance the type, location, and scale of restoration and make the necessary trade‐offs between national and local aspirations. New approaches and metrics will have to be developed to monitor and assess restoration success at these larger scales.  相似文献   

19.
A long-standing debate between wildlife agencies and biological control researchers and practitioners concerns Diorhabda carinulata Desbrochers (Coleoptera: Chrysomelidae) introduced to suppress invasive Tamarix spp. (Tamaricaceae), and potential impacts of Tamarix defoliation on endangered southwestern willow flycatchers using this non-native plant as nesting habitat in some western riparian ecosystems. The conflict and ensuing legal actions are currently centered on the presence of D. carinulata within the breeding range of the flycatcher in the Virgin River watershed, which has led to APHIS termination of permits supporting the biocontrol development program and has also affected other programs to develop biocontrol agents against environmental weeds. Central to concerns over wildlife is the lack of rehabilitation of native vegetation where biocontrol is expected, so there are current and planned efforts to promote restoration of native cottonwood-willow habitat to mitigate the anticipation decline in Tamarix cover. A strategic approach to riparian restoration is outlined which could facilitate sustainable, and scientifically documented recovery of this iconic habitat type. While the results of these efforts will not be known immediately, the process which is leading to riparian restoration has brought specialists from both sides of the debate together in search of resolution via collaboration, and if successful, may allow re-initiation of the Tamarix biocontrol program attendant with habitat enhancement for wildlife species of conservation concern.  相似文献   

20.
Traditionally, ecological restoration is based on re‐establishing patterns of vegetation communities with the expectation that wildlife will recolonize, restoring the ecological function. However, in many restoration projects, wildlife fails to recolonize, even when vegetation is restored, in many cases because revegetated habitats lack the critical features required by wildlife. We present a new approach to restoration, based on a detailed understanding of ecological process, the mechanisms by which wildlife respond to landscape patterns. Our animal‐centric approach involves measuring the risk‐sensitive decision‐making of individual animals as they balance searching for food, mates, and breeding sites with avoiding being eaten by predators and relates this to fine‐scale habitat and landscape structure. The outcome of these decisions can be measured in occupancy of habitat, the information on which conventional restoration is based. Incorporating landscape genetics allows retrospective assessment of the outcome of dispersal decisions by individual animals on a deeper time frame and at regional scales. Fine‐scale connectivity models can be parameterized with these multiscale spatial and temporal data to direct restoration efforts. We are translating this novel approach to practice in the large Midlands restoration project (4 years, AUD $6 million) in Tasmania, Australia, in partnership with Greening Australia. More than 200 years of intensive agricultural practice in this National Biodiversity Hotspot has resulted in extensive landscape modification, high densities of feral cats, and decline of many native mammals. Our research–practice partnership will alter the way that restoration is done, leading hopefully to successful restoration of wildlife, gene flow, and ecological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号