首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of calcium was assayed in exponentially growing and G1 arrested temperature sensitive cdc mutants of Saccharomyces cerevisiae. There was no statistically significant difference in the rate of Ca2+ influx in cdc 28, cdc 37 and cdc 4 arrested cells, as well as in wild type cells arrested in G1 phase in comparison to exponentially growing cells. There was however a significant increase in Ca2+ uptake in cdc 7 and cdc 24 arrested cells. The former is known to arrest before bud emergence and initiation of DNA synthesis; arrest of the latter affects bud formation while DNA synthesis continues. The results suggest that Ca2+ may have a role in bud formation and growth.  相似文献   

2.
The CLS4/CDC24 is essential for the budding process of the yeast Saccharomyces cerevisiae. Disruption of the CLS4/CDC24 gene is lethal, and expression of the CLS4 product under the control of the GAL1 promoter is sufficient for cellular growth. The CLS4 product is detected in yeast cell lysate with an apparent molecular mass of 93 kD (854 amino acid residues) and shows homology with the human DBL oncogene product. Temperature-sensitive cdc24-1 mutation is located in the N-terminal portion of the protein whereas Ca(2+)-sensitive cls4-1 mutation is present after the DBL-homologous region (amino acid residues 281-518) near the putative Ca(2+)-binding site. Mutations within the DBL-homologous region are responsible for the Ca(2+)-sensitive phenotype. Thus the CLS4 gene product seems to have several functional domains within the molecule essential for bud assembly.  相似文献   

3.
Thirty Ca2+-sensitive (cls: calcium sensitive) mutants of Saccharomyces cerevisiae were isolated by replica-plating. These mutants, which each had a single recessive chromosomal mutation, were divided into 18 complementation groups. Some cls mutants showed a phenotype of specific sensitivity to Ca2+, while others showed phenotypes of sensitivities to several divalent cations. From measurements of the calcium contents and initial rates of Ca2+ uptake of the cls mutants, 16 of the 18 cls complementation groups were classified into four types: type I mutants (cls5, cls6, cls13, cls14, cls15, cls16, cls17, and cls18) had both elevated calcium contents and increased uptake activities. A type II mutant (cls4) had a normal calcium content and normal uptake activity; type III mutants (cls1, cls2 and cls3) had elevated calcium contents but normal initial rates of Ca2+ uptake; type IV mutants (cls8, cls9, cls10 and cls11) had normal calcium contents but increased initial rates of Ca2+ uptake. Two of the mutants (cls7 and cls12) had intermediate biochemical properties. The primary defects of these four types of cls mutants were considered in terms of the Ca2+ transport system(s). Both type I and type III mutants, which had elevated calcium contents, simultaneously showed a trifluoperazine-sensitive phenotype, suggesting a close correlation of this phenotype with elevated calcium content. In addition, all type IV mutants were unable to utilize nonfermentable sugars. One CLS gene, CLS7, was located on the left arm of chromosome V.  相似文献   

4.
A cls5-1 mutant of Saccharomyces cerevisiae is specifically sensitive to high concentrations of Ca2+, with elevated intracellular calcium content and altered cell morphology in the presence of 100 mM Ca2+. To reveal the mechanisms of the Ca2+-sensitive phenotype, we investigated the gene responsible and its interacting network. We demonstrated that CLS5 is identical to PFY1, encoding profilin. Involvement of profilin in the maintenance of intracellular Ca2+ homeostasis was supported by the fact that both exchangeable and non-exchangeable intracellular Ca2+ pools in the cls5-1 mutant are higher than those of the wild-type strain. Several mutations of the genes whose proteins physically interact with profilin resulted in the Ca2+-sensitive phenotype. Examination of the intracellular Ca2+ pools indicated that Bni1p, Bem1p, Rho1p, and Cla4p are also required for the maintenance of Ca2+ homeostasis. Quantitative morphological analysis revealed that the Ca2+-induced morphological changes in cls5-1 cells are similar to bem1 and cls4-1 cells. Common Ca2+-induced morphological changes were an increase in cell size and a decrease of the ratio of budded cells in the population. Since a mutation allele of cls4-1 is located in the CDC24 gene, we suggest that profilin, Bem1p, and Cdc24p are required for Ca2+-modulated bud formation. Thus, profilin is involved in Ca2+ regulation in two ways: the first is Ca2+ homeostasis by coordination with Bni1p, Bem1p, Rho1p, and Cla4p, and the second is the requirement of Ca2+ for bud formation by coordination with Bem1p and Cdc24p.  相似文献   

5.
Cells of the yeast Saccharomyces cerevisiae, which bear a cdc4 gene mutation, arrest early in the cell cycle but continue to produce buds in a periodic fashion. We show here that this periodic bud formation by cells already arrested at the CDC4 step is inhibited if the cell cycle regulatory step "start" is also specifically blocked by mutation or by the presence of the yeast mating pheromone alpha-factor. Thus, the characteristic periodic bud formation by cdc4 mutant cells requires the continued ability to perform start. This finding raises questions concerning the nature of start; these issues are discussed.  相似文献   

6.
RHO3 and RHO4 are members of the ras superfamily genes of the yeast Saccharomyces cerevisiae and are related functionally to each other. Experiments using a conditionally expressed allele of RHO4 revealed that depletion of both the RHO3 and RHO4 gene products resulted in lysis of cells with a small bud, which could be prevented by the presence of osmotic stabilizing agents in the medium. rho3 rho4 cells incubated in medium containing an osmotic stabilizing agent were rounded and enlarged and displayed delocalized deposition of chitin and delocalization of actin patches, indicating that these cells lost cell polarity. Nine genes whose overexpression could suppress the defect of the RHO3 function were isolated (SRO genes). Two of them were identical with CDC42 and BEM1, bud site assembly genes involved in the process of bud emergence. A high dose of CDC42 complemented the rho3 defect, whereas overexpression of RHO3 had an inhibitory effect on the growth of mutants defective in the CDC24-CDC42 pathway. These results, along with comparison of cell morphology between rho3 rho4 cells and cdc24 (or cdc42) mutant cells kept under the restrictive conditions, strongly suggest that the functions of RHO3 and RHO4 are required after initiation of bud formation to maintain cell polarity during maturation of daughter cells.  相似文献   

7.
I Shibuya  C Miyazaki    A Ohta 《Journal of bacteriology》1985,161(3):1086-1092
Escherichia coli K-12 derivatives with a common genetic background carrying, either alone or in combination, the pss-1 allele coding for a temperature-sensitive phosphatidylserine synthase (A. Ohta and I. Shibuya, J. Bacteriol. 132:434-443, 1977) and cls- for a defective cardiolipin synthase (G. Pluschke et al., J. Biol. Chem. 253:5048-5055, 1978) were constructed. The phospholipid polar headgroup compositions of these strains were significantly different from each other depending on their genotypes and growth temperature, whereas other membrane characteristics such as the total phospholipid content, fatty acid composition, membrane protein profile, and lipopolysaccharide content were practically the same, suggesting that the phenotypes of these strains were the direct consequences of abnormalities in membrane phospholipid composition. The cls pss-1 double mutation caused an unusual accumulation of phosphatidylglycerol with an extremely low content of cardiolipin. The cls mutation alone was found to give a growth defect, and its introduction into a pss-1 mutant resulted in an enhanced temperature sensitivity of growth. Addition to a broth medium of a proper concentration of sucrose, NaCl, Mg2+, or Ca2+ allowed the growth of a pss-1 mutant at otherwise nonpermissive temperature, but a pss-1 cls double mutant required the combined addition of sucrose or NaCl and MgCl2 for full growth at 42 degrees C. The possible mechanisms for these physiological consequences of the mutations are discussed on a molecular basis. The remedial effects of culture supplements allowed the pss-1 mutants to grow at 42 degrees C resulting in enhanced abnormalities of membrane phospholipid composition.  相似文献   

8.
In the budding yeast Saccharomyces cerevisiae, cell cycle progression and cytokinesis at mitotic exit are proposed to be linked by CDC14 phosphatase antagonizing the function of mitotic B-type cyclin (CLBs). We have isolated a temperature-sensitive mutant, cdc14(A280V), with a mutation in the conserved phosphatase domain. Prolonged arrest in the cdc14(A280V) mutant partially uncoupled cell cycle progression from the completion of cytokinesis as measured by bud re-emergence, in the form of elongated apical projections, and DNA re-replication. In contrast to previous mitotic exit mutants, cdc14(A280V) mutants displayed a strong bias for the first apical projection to form in the mother cell body. Using cdc14(A280V) mutant phenotypes, the functions of the B-type cyclins at mitotic exit were investigated. The preference in mother-daughter apical projection formation was observed to be independent of any individual CLB function. However, cdc14(A280V)clb1Δ cells displayed a pronounced increase in apical projections, while cdc14(A280V)clb3Δ cells were observed to form round cellular chains. While cdc14(A280V) cells arrested at mitotic exit, both cdc14(A280V)clb1Δ and cdc14(A280V)clb3Δ cells completed cytokinesis, but failed cell separation. cdc14(A280V)clb2Δ cells displayed a defect in actin ring assembly. These observations differentiate the functions of CLB1, CLB2, and CLB3 at mitotic exit, and are consistent with the hypothesis that CLB activities are antagonized by the CDC14 phosphatase in order to couple cell cycle progression with cytokinesis at mitotic exit.  相似文献   

9.
The Cdc42p GTPase is involved in the signal transduction cascades controlling bud emergence and polarized cell growth in S. cerevisiae. Cells expressing the cdc42(V44A) effector domain mutant allele displayed morphological defects of highly elongated and multielongated budded cells indicative of a defect in the apical-isotropic switch in bud growth. In addition, these cells contained one, two, or multiple nuclei indicative of a G2/M delay in nuclear division and also a defect in cytokinesis and/or cell separation. Actin and chitin were delocalized, and septin ring structure was aberrant and partially delocalized to the tips of elongated cdc42(V44A) cells; however, Cdc42(V44A)p localization was normal. Two-hybrid protein analyses showed that the V44A mutation interfered with Cdc42p's interactions with Cla4p, a p21(Cdc42/Rac)-activated kinase (PAK)-like kinase, and the novel effectors Gic1p and Gic2p, but not with the Ste20p or Skm1p PAK-like kinases, the Bni1p formin, or the Iqg1p IQGAP homolog. Furthermore, the cdc42(V44A) morphological defects were suppressed by deletion of the Swe1p cyclin-dependent kinase inhibitory kinase and by overexpression of Cla4p, Ste20p, the Cdc12 septin protein, or the guanine nucleotide exchange factor Cdc24p. In sum, these results suggest that proper Cdc42p function is essential for timely progression through the apical-isotropic switch and G2/M transition and that Cdc42(V44A)p differentially interacts with a number of effectors and regulators.  相似文献   

10.
The function of calcium as a signaling molecule is conserved in eukaryotes from fungi to humans. Previous studies have identified the calcium-activated phosphatase calcineurin as a critical factor in governing growth of the human pathogenic fungus Cryptococcus neoformans at mammalian body temperature. Here, we employed insertional mutagenesis to identify new genes required for growth at 37 degrees C. One insertion mutant, cam1-ts, that displayed a growth defect at 37 degrees C and hypersensitivity to the calcineurin inhibitor FK506 at 25 degrees C was isolated. Both phenotypes were linked to the dominant marker in genetic crosses, and molecular analysis revealed that the insertion occurred in the 3' untranslated region of the gene encoding the calcineurin activator calmodulin (CAM1) and impairs growth at 37 degrees C by significantly reducing calmodulin mRNA abundance. The CAM1 gene was demonstrated to be essential using genetic analysis of a CAM1/cam1Delta diploid strain. In the absence of calcineurin function, the cam1-ts mutant displayed a severe morphological defect with impaired bud formation. Expression of a calmodulin-independent calcineurin mutant did not suppress the growth defect of the cam1-ts mutant at 37 degrees C, indicating that calmodulin promotes growth at high temperature via calcineurin-dependent and -independent pathways. In addition, a Ca2+-binding-defective allele of CAM1 complemented the 37 degrees C growth defect, FK506 hypersensitivity, and morphogenesis defect of the cam1-ts mutant. Our findings reveal that calmodulin performs Ca2+- and calcineurin-independent and -dependent roles in controlling C. neoformans morphogenesis and high-temperature growth.  相似文献   

11.
The Saccharomyces cerevisiae ras-like gene RSR1 is particularly closely related to the mammalian gene Krev-1 (also known as smg21A and rap1A). RSR1 was originally isolated as a multicopy suppressor of a cdc24 mutation, which causes an inability to bud or establish cell polarity. Deletion of RSR1 itself does not affect growth but causes a randomization of bud position. We have now constructed mutant alleles of RSR1 encoding proteins with substitutions of Val for Gly at position 12 (analogous to constitutively activated Ras proteins) or Asn for Lys at position 16 (analogous to a dominant-negative Ras protein). rsr1Val-12 could not restore a normal budding pattern to an rsr1 deletion strain but could suppress a cdc24 mutation when overexpressed. rsr1Asn-16 could randomize the budding pattern of a wild-type strain even in low copy number but was not lethal even in high copy number. These and other results suggest that Rsr1p functions only in bud site selection and not in subsequent events of polarity establishment and bud formation, that this function involves a cycling between GTP-bound and GDP-bound forms of the protein, and that the suppression of cdc24 involves direct interaction between Rsr1p[GTP] and Cdc24p. Functional homology between Rsr1p and Krev-1 p21 was suggested by the observations that expression of the latter protein in yeast cells could both suppress a cdc24 mutation and randomize the budding pattern of wild-type cells. As Krev-1 overexpression can suppress ras-induced transformation of mammalian cells, we looked for effects of RSR1 on the S. cerevisiae Ras pathway. Although no suppression of the activated RAS2Val-19 allele was observed, overexpression of rsr1Val-12 suppressed the lethality of strains lacking RAS gene function, apparently through a direct activation of adenyl cyclase. This interaction of Rsr1p with the effector of Ras in S. cerevisiae suggests that Krev-1 may revert ras-induced transformation of mammalian cells by affecting the interaction of ras p21 with its effector.  相似文献   

12.
A detailed kinetic analysis of the cell cycle of cdc25-1, RAS2Val-19, or cdc25-1/RAS2Val-19 mutants during exponential growth is presented. At the permissive temperature (24 degrees C), cdc25-1 cells show a longer G1/unbudded phase of the cell cycle and have a smaller critical cell size required for budding without changing the growth rate in comparison to an isogenic wild type. The RAS2Val-19 mutation efficiently suppresses the ts growth defect of the cdc25-1 mutant at 36 degrees C and the increase of G1 phase at 24 degrees C. Moreover, it causes a marked increase of the critical cell mass required to enter into a new cell division cycle compared with that of the wild type. Since the critical cell mass is physiologically modulated by nutritional conditions, we have also studied the behavior of these mutants in different media. The increase in cell size caused by the RAS2Val-19 mutation is evident in all tested growth conditions, while the effect of cdc25-1 is apparently more pronounced in rich culture media. CDC25 and RAS2 gene products have been showed to control cell growth by regulating the cyclic AMP metabolic pathway. Experimental evidence reported herein suggests that the modulation of the critical cell size by CDC25 and RAS2 may involve adenylate cyclase.  相似文献   

13.
K.R. Prasad  P.M. Rosoff   《Cell calcium》1992,13(10):615-626
The yeast mating pheromones, a and alpha factors, bind to specific G protein-coupled receptors in haploid cells and bring about both growth arrest in the early G1 phase of the cell cycle and differentiation into mating capable cells. This induces an increase in Ca2+ influx leading to elevated intracellular calcium concentrations, which has been shown to be essential for subsequent downstream events and the mating process itself [1]. We have characterized the alpha factor induced increase in cellular Ca2+ in wild type S. cerevisiae and in the temperature-sensitive cell division cycle mutants cdc7 and cdc28 which are growth-arrested at the G0-G1 border at the nonpermissive temperature. We observed a 2-4 fold increase in the initial velocity of Ca2+ influx in alpha factor-treated wild-type cells and in cdc7 and cdc28 cells grown at the nonpermissive temperature. Calcium influx was energy dependent, inhibited by membrane depolarization and slightly increased by hyperpolarization. Furthermore, Ca2+ influx was sensitive to both divalent and trivalent cations, but was unaffected by nifedipine and verapamil. These data demonstrate that budding yeast possesses a regulated Ca2+ transport mechanism, the activation of which is dependent upon exit out of the cell cycle and growth cessation. This transport mechanism has many similarities to that observed in mitogen-stimulated mammalian cells.  相似文献   

14.
The crinkled leaves8 (cls8) mutant of Arabidopsis thaliana displays a developmental phenotype of abnormal leaf and flower morphology, reduced root growth and bleached leaf sections. Map-based cloning identified the mutation as being within the gene encoding the large subunit of ribonucleotide reductase (RNR1), the enzyme that catalyses the rate-limiting step in the production of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Levels of dTTP and dATP were significantly reduced in cls8. Two further mutant cls8 alleles and cls8::RNAi plants show similar or more severe phenotypes. The cls8-1 mutant has fewer copies of the chloroplast genome, and fewer, larger chloroplasts than wild-type plants. The ultrastructure of the chloroplast, however, appears normal in cls8-1 leaves. We present evidence that, under conditions of limited dNTP supply, the inhibition of chloroplast DNA replication may be the primary factor in inducing aberrant growth.  相似文献   

15.
The PKC1 gene of Saccharomyces cerevisiae encodes a homologue of the Ca(2+)-dependent isozymes of mammalian protein kinase C (Levin, D.cE., F. O. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner. 1990. Cell. 62:213-224). Cells depleted of the PKC1 gene product display a uniform phenotype, a behavior indicating a defect in the cell division cycle (cdc). These cells arrest division after DNA replication, but before mitosis. Unlike most cdc mutants, which continue to grow in the absence of cell division, PKC1-depleted cells arrest growth with small buds. We created conditional alleles of PKC1 to explore the nature of this unusual cdc defect. In contrast to PKC1-depleted cells, all of the conditional pkc1 mutants isolated were suppressed by the addition of CaCl2 to the medium, suggesting that the mutant enzymes could be activated by Ca2+. Arrest of growth and cell division in the conditional mutants was accompanied by cessation of protein synthesis, rapid loss of viability, and release of cellular material into the medium, suggesting cell lysis. This conclusion was supported by the observation that a pkc1 deletion mutant was capable of proliferation in osmotically stabilized medium, but underwent rapid cell lysis when shifted to hypo-osmotic medium. We have incorporated these observations into a model to explain the cdc-specific arrest of pkc1 mutants.  相似文献   

16.
17.
Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance.  相似文献   

18.
Regulation of the formin for3p by cdc42p and bud6p   总被引:4,自引:2,他引:2       下载免费PDF全文
Formins are conserved actin nucleators responsible for the assembly of diverse actin structures. Many formins are controlled through an autoinhibitory mechanism involving the interaction of a C-terminal DAD sequence with an N-terminal DID sequence. Here, we show that the fission yeast formin for3p, which mediates actin cable assembly and polarized cell growth, is regulated by a similar autoinhibitory mechanism in vivo. Multiple sites govern for3p localization to cell tips. The localization and activity of for3p are inhibited by an intramolecular interaction of divergent DAD and DID-like sequences. A for3p DAD mutant expressed at endogenous levels produces more robust actin cables, which appear to have normal organization and dynamics. We identify cdc42p as the primary Rho GTPase involved in actin cable assembly and for3p regulation. Both cdc42p, which binds at the N terminus of for3p, and bud6p, which binds near the C-terminal DAD-like sequence, are needed for for3p localization and full activity, but a mutation in the for3p DAD restores for3p localization and other phenotypes of cdc42 and bud6 mutants. In particular, the for3p DAD mutation suppresses the bipolar growth (NETO) defect of bud6Delta cells. These findings suggest that cdc42p and bud6p activate for3p by relieving autoinhibition.  相似文献   

19.
Park CJ  Song S  Lee PR  Shou W  Deshaies RJ  Lee KS 《Genetics》2003,163(1):21-33
In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of budding yeast polo kinase Cdc5p, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal domain. Here we show that, at a semipermissive temperature, the cdc5-3 mutant exhibited a synergistic bud elongation and growth defect with loss of HSL1, a component important for normal G(2)/M transition. Loss of SWE1, which phosphorylates and inactivates the budding yeast Cdk1 homolog Cdc28p, suppressed the cdc5-3 hsl1Delta defect, suggesting that Cdc5p functions at a point upstream of Swe1p. In addition, the cdc5-4 and cdc5-7 mutants exhibited chained cell morphologies with shared cytoplasms between the connected cell bodies, indicating a cytokinetic defect. Close examination of these mutants revealed delayed septin assembly at the incipient bud site and loosely organized septin rings at the mother-bud neck. Components in the mitotic exit network (MEN) play important roles in normal cytokinesis. However, loss of BFA1 or BUB2, negative regulators of the MEN, failed to remedy the cytokinetic defect of these mutants, indicating that Cdc5p promotes cytokinesis independently of Bfa1p and Bub2p. Thus, Cdc5p contributes to the activation of the Swe1p-dependent Cdc28p/Clb pathway, normal septin function, and cytokinesis.  相似文献   

20.
Previous studies attributed the yeast (Saccharomyces cerevisiae) cdc1(Ts) growth defect to loss of an Mn2+-dependent function. In this report we show that cdc1(Ts) temperature-sensitive growth is also associated with an increase in cytosolic Ca2+. We identified two recessive suppressors of the cdc1(Ts) temperature-sensitive growth which block Ca2+ uptake and accumulation, suggesting that cytosolic Ca2+ exacerbates or is responsible for the cdc1(Ts) growth defect. One of the cdc1(Ts) suppressors is identical to a gene, MID1, recently implicated in mating pheromone-stimulated Ca2+ uptake. The gene (CCH1) corresponding to the second suppressor encodes a protein that bears significant sequence similarity to the pore-forming subunit (alpha1) of plasma membrane, voltage-gated Ca2+ channels from higher eukaryotes. Strains lacking Mid1 or Cch1 protein exhibit a defect in pheromone-induced Ca2+ uptake and consequently lose viability upon mating arrest. The mid1delta and cch1delta mutants also display reduced tolerance to monovalent cations such as Li+, suggesting a role for Ca2+ uptake in the calcineurin-dependent ion stress response. Finally, mid1delta cch1delta double mutants are, by both physiological and genetic criteria, identical to single mutants. These and other results suggest Mid1 and Cch1 are components of a yeast Ca2+ channel that may mediate Ca2+ uptake in response to mating pheromone, salt stress, and Mn2+ depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号