首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences (<1 J/m2, producing less than one pyrimidine dimer per replicon) rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates without noticeably affecting synthesis in multi-repliconsize intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher (>1 J/m2, producing more than one dimer per replicon) cytotoxic fluences inhibited DNA synthesis in operating replicons presumably because the elongation of nascent strands was blocked where pyrimidine dimers were present in template strands. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences. indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation than the repair-deficient strains despite their ability to remove pyrimidine dimers. This analysis suggests that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery.  相似文献   

2.
The effect of antitumor antibiotic neocarzinostatin on DNA replication in HeLa cells was studied by pulse-labeling of DNA with [3H]thymidine and sedimentation analysis of the DNA with alkaline sucrose gradients. The drug, which produced DNA damage, primarily inhibited the replicon initiation in the cells at low doses (less than or equal to 0.1 microgram/ml), and at high doses (greater than or equal to 0.5 microgram/ml) inhibited the DNA chain elongation. An analysis of the number of single-strand breaks of parental DNA, induced by neocarzinostatin, indicated that inhibition of the initiation occurred with introduction of single-strand breaks of less than 1.5 . 10(4)/cell, while inhibition of the elongation occurred with introduction of single-strand breaks of more than 7.5 . 10(4)/cell. Assuming that the relative molecular mass of DNA/HeLa cell was about 10(13) Da, the target size of DNA for inhibition of replicon initiation was calculated to be about 10(9) Da, such being close to an average size of loop DNA in the cell and for inhibition of chain elongation, 1-2 . 10(8) Da which was of the same order of magnitude as the size of replicons. Recovery of inhibited DNA replication by neocarzinostatin occurred during post-incubation of the cells and seemed to correlate with the degree of rejoining of the single-strand breaks of parental DNA. Caffeine and theophylline enhanced the recovery of the inhibited replicon initiation, but did not aid in the repair of the breaks in parental DNA.  相似文献   

3.
To investigate the inhibition of DNA replication by tumor promoters, we incubated HeLa cells with 12-O-tetradecanoylphorbol-13-acetate (TPA; 10?8 to 10?5 g/ml) and quantified DNA synthesis on alkaline sucrose gradients. TPA was found to selectively inhibit replicon initiation without affecting DNA chain elongation in replicons that had already initiated. No inhibition of DNA synthesis was seen when cells were exposed to the nonpromoting derivative of TPA, 4-α-phorbol 12,13-didecanoate. Superoxide dismutase did not prevent the TPA-induced inhibition of initiation.  相似文献   

4.
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.  相似文献   

5.
DNA synthesis in 6 ataxia langiectasia (AT) cell strains was much more resistant to X-irradiation than was DNA synthesis in normal human diploid cells. 3 of the cell strains tested have been classified as proficient in repair replication. These data, along with those reported elsewhere, strongly suggest that radioresistant DNA synthesis is an intrinsic feature of this disease.The radioresistance of DNA synthesis in AT cells is primarily due to a reduced inhibition of replicon initiation compared to that occuring in normal cells, but DNA chain elongation is also more radioresistant in AT cells. The small inhibition of DNA synthesis that does occur in AT cells at doses up to 2000 rad is almost exclusively due to inhibition of replicon initiation and not to inhibition of chain elongation, as would be expected from results with normal human cells or from previous studies with established cell lines.  相似文献   

6.
The synergistic cytotoxic activity exhibited by bifunctional alkylating agents in the presence of methylxanthines has been associated with methylxanthine-induced reversal of alkylator-induced DNA replicon initiation inhibition. This has also been seen with methylxanthines and ionizing irradiation. Methylxanthines do not appear exacerbate drug or ionizing radiation-induced damage. We report here a situation in which methylxanthine-induced reversal of DNA replicon initiation inhibition is not associated with increased cytotoxicity of the alkylator. Murine L1210 leukemia cells were assayed for cytotoxicity following treatment with either L-PAM or cis-DDP in the presence or absence of theophylline. Theophylline increased the cytotoxicity seen after L-PAM treatment but failed to increase the cis-DDP induced cytotoxicity. Analysis of pulse-labeled DNA on alkaline sucrose gradients revealed the expected decrease in DNA replicon initiation in L1210 cells treated with either L-PAM or cis-DDP. Theophylline had no effect on replicon initiation in untreated cells. Theophylline reversed the replicon initiation inhibition in cells treated with either L-PAM or cis-DDP. The reason for the apparent lack of added toxicity of the replicon initiation inhibition reversal in L1210 cells treated with theophylline and DDP is unknown.  相似文献   

7.
The effects of initiation, termination and clustering of replicons have been considered in the development of equations which are used to measure DNA chain elongation in mammalian cells by density gradient techniques. These equations can be used to determine the average replicon size as well as the rate of chain elongation. Experimental data from WI-38 and HeLa cells are presented which show the applicability of these methods. Several models of replication initiation and termination have been developed. Some of these models can be eliminated experimentally and the experimental results are consistent with the notion that neighboring replicons are initiated simultaneously or sequentially with short (~-0·5 min) interinitiation time.  相似文献   

8.
The hyperthermic inhibition of cellular DNA synthesis, i.e., reduction in replicon initiation and delay in DNA chain elongation, was previously postulated to be involved in the induction of chromosomal aberrations believed to be largely responsible for killing S-phase cells. Utilizing asynchronous Chinese hamster ovary cells heated for 15 min at 45.5 degrees C, an increase in single-stranded regions in replicating DNA (as measured by BND-cellulose chromatography) persisted in heated cells for as long as replicon initiation was affected. Alkaline sucrose gradient analyses of cells pulse-labeled immediately after heating with [3H]thymidine and subsequently chased at 37 degrees C revealed that these S-phase cells can eventually complete elongation of the replicons in operation at the time of heating, but required about six times as long relative to control cells which completed replicon elongation within 4 h. DNA chain elongation into multicluster-sized molecules was prevented for up to 18 h in these heated cells, resulting in a buildup of cluster-sized molecules (approximately 120-160 S) mainly because of the long-term heat damage to the replicon initiation process. Utilizing bromodeoxyuridine (BrdU)-propidium iodide bivariate analysis on a flow cytometer to measure cell progression, control cells pulsed with BrdU and chased in unlabeled medium progressed through S and G2M with cell division starting after 2 h of chase time. In contrast, the majority of the heated S-phase cells progressed slowly and remained blocked in S phase for about 18 h before cell division was observed after 24 h postheat. Our findings suggest that possible sites for where the chromosomal aberrations may be occurring in heated S-phase cells are either (1) at the persistent single-stranded DNA regions or (2) at the regions between clusters of replicons, because this long-term heat damage to the DNA replication process might lead to many opportunities for abnormal DNA and/or protein exchanges to occur at these two sites.  相似文献   

9.
The inhibition of DNA synthesis in normal human cells by UV is a complex function of fluence because it has several causes. At low fluences, inhibition of replicon initiation is most important. This is made clear by the fact that it occurs to a lesser degree in cells from patients with ataxia telangiectasia (AT). Assuming that only leading strand synthesis is blocked by UV-induced lesions, single lesions between replicons in parental strands for leading strand synthesis inhibit DNA synthesis by acting as temporary blocks until they are replicated by extension of the lagging strand of the adjacent replicon. A more severe inhibition occurs when two lesions are induced between adjacent growing replicons, because one in four possible configurations may result in a long-lived unreplicated region (LLUR). In the absence of excision repair, these may eventually be replicated by activation of an otherwise unused origin within the LLUR. The frequency of LLURs increases steeply with fluence. Activation of normally unused origins to replicate LLURs may facilitate recovery from inhibition of DNA synthesis, but repair of lesions is probably more important. In excision-repair-defective cells, an LLUR without an origin to initiate its replication may be a lethal lesion.  相似文献   

10.
At any moment during S phase, regions of genomic DNA are in various stages of replication (i.e. initiation, chain elongation, and termination). These stages may be differentially inhibited after treatment with various carcinogens that damage DNA such as UV. We used visualization of active replication units in combed DNA fibers, in combination with quantitative analyses of the size distributions of nascent DNA, to evaluate the role of S-checkpoint proteins in UV-induced inhibition of DNA replication. When HeLa cells were exposed to a low fluence (1 J/m2) of 254 nm UV light (UVC), new initiation events were severely inhibited (5-6-fold reduction). A larger fluence of UVC (10 J/m2) resulted in stronger inhibition of the overall rate of DNA synthesis without decreasing further the frequency of replicon initiation events. Incubation of HeLa cells with caffeine and knockdown of ATR or Chk1 kinases reversed the UVC-induced inhibition of initiation of new replicons. These findings illustrate the concordance of data derived from different experimental approaches, thus strengthening the evidence that the activation of the intra-S checkpoint by UVC is dependent on the ATR and Chk1 kinases.  相似文献   

11.
Using DNA fiber autoradiography we have revealed a new defect earlier unknown in Down's syndrome but analogous to that earlier shown by the authors in AT and basal cell nevus. This syndrome involves a significantly decreased number of simultaneously operating groups of replicons compared to that in normal cells., the rate of fork movement and the fusion of neighbouring units in the group being unchanged. Ionizing radiation (5 Gy) does not change the rate of DNA chain growth in the cells derived from the affected individuals, however, it significantly reduces this parameter in normal cells due to inhibition of replicon initiation in the whole clusters. Thus, radioresistant DNA synthesis in chromosomal instability syndromes may be explained by some defect in DNA replication in unirradiated cells analogous to that in irradiated normal cells.  相似文献   

12.
13.
Incubation of mouse cells with N-methyl-N′-nitro-N-nitrosoguanidine causes a strong inhibition of DNA replication the extent of which varies with the cell line used. Analysis of the products synthesized in drug-treated cells indicates a particularly severe effect on the joining of replicons while other steps in DNA synthesis like initiation and chain elongation are much less affected. The data indicate that replicon fusion may be extremely sensitive to changes in the topology of DNA induced by the introduction of rare single-strand breaks during repair of N-methylated purines produced by incubation of cells with small amounts of the methylating agent  相似文献   

14.
A new method is described for estimating replicon sizes in mammalian cells. Cultures were pulse labeled with [3H]thymidine ([3H]TdR) and bromodeoxyuridine (BrdUrd) for up to 1 h. The lengths of the resulting labeled regions of DNA, Lobs, were estimated by a technique wherein the change in molecular weight of nascent DNA strands, induced by 313 nm light, is measured by velocity sedimentation in alkaline sucrose gradients. If cells are exposed to 1,000 rads of X-rays immediately before pulse labeling, initiation of replicon operation is blocked, although chain elongation proceeds almost normally. Under these conditions Lobs continues to increase only until operating replicons have completed their replication. This value for Lobs then remains constant as long as the block to initiation remains and represents an estimate for the average size of replicons operating in the cells before X-irradiation. For human diploid fibroblasts and human HeLa cells this estimated average size is approximately 17 micron, whereas for Chinese hamster ovary cells, the average replicon size is about 42 micron.  相似文献   

15.
To synchronize SV40 replicons, simian cells infected with a tsA mutant were restricted at 40 degrees, to complete ongoing replication and returned to 32 degrees, to activate new replicons in the presence of the DNA chain elongation inhibitor aphidicolin. Upon further incubation at 40 degrees without the drug, 3H-dT was incorporated into SV40 FI DNA, almost to the extent seen with cells recovered in the absence of the drug. To determine whether DNA synthesis would begin from the origin, following the temperature-shifts-aphidicolin regimen, chains subsequently pulse-labeled with (alpha-32p)dGTP in isolated nuclei were analyzed for size distribution and genomic location. These chains reached up to 300-400 nucleotides in size, unlike the control which featured comparable amounts of label in long chains and Okazaki pieces. The nascent DNA of the drug-treated system could be chased into longer chains, indicating that it was a replicative intermediate; and it hybridized preferentially to an origin proximal fragment of AtuI- restricted SV40 DNA, demonstrating partial replicon synchronization. The data prove that T-antigen activates the SV40 replicon independent of DNA chain elongation and suggest means to study the mechanism of DNA chain priming at the origin.  相似文献   

16.
DNA damage-induced S phase (S) checkpoint includes inhibition of both replicon initiation and chain elongation. The precise mechanism for controlling the two processes remains unclear. In this study, we showed that Hus1-deficient mouse cells had an impaired S checkpoint after exposure to DNA strand break-inducing agents such as camptothecin (CPT) (≥1.0 µM), or ionizing radiation (IR) (≥15 Gy). The Hus1-dependent S checkpoint contributes to cell resistance to CPT. This impaired S checkpoint induced by CPT or IR in Hus1-deficient cells reflected mainly the chain elongation step of DNA replication and was correlated with the reduction of dissociation of PCNA from DNA replication foci. Although Hus1 is required for Rad9 phosphorylation following exposure of cells to CPT or IR, Hus1-deficient cells showed normal activation of ATR/CHK1 and ATM kinases at doses where the checkpoint defects were manifested, suggesting that Hus1 is not a component of the sensor system for activating these pathways in S checkpoint induced by CPT or IR.  相似文献   

17.
L F Povirk  I H Goldberg 《Biochemistry》1982,21(23):5857-5862
Treatment of CHO cells with low doses of the protein antibiotic neocarzinostatin severely inhibited DNA replicon initiation but had no effect on chain elongation. The selectivity of the effect on initiation, which was greater than that seen with other chemical agents and comparable to that seen with X-rays, explains the biphasic dose response seen for DNA synthesis inhibition by this drug. Parallel experiments employing the nucleoid sedimentation technique indicated that half-maximal relaxation of domains of DNA supercoiling and half-maximal inhibition of replicon initiation required the same dose of neocarzinostatin, approximately 0.03 micrograms/mL. These results, similar results obtained with the protein antibiotic auromomycin, and previous results obtained with X-rays suggest a quantitative correlation between inhibition of replicon initiation and induction of sufficient strand breakage to relax domains of supercoiling in DNA of mammalian cells. Results in human ataxia telangiectasia fibroblasts indicated that neocarzinostatin, like X-rays, is much less effective in inhibiting DNA synthesis in these cells than in normal human fibroblasts. This finding is consistent with the hypothesis that the genetic defect in ataxia telangiectasia involves a failure to recognize the presence of strand breaks in cellular DNA.  相似文献   

18.
Novobiocin, an inhibitor of gyrase-induced DNA supercoiling and DNA replication in prokaryotes, inhibited the incorporation of DNA precursors into DNA in both intact and permeable Chinese hamster ovary cells; much higher concentrations were required for permeable cells, in which no new replicons were initiated. Nucleoids were prepared from cells that were incubated for 60 min with 200 micrograms/ml novobiocin, made permeable, and incubated with 0--50 micrograms/ml ethidium bromide. Sedimentation of the nucleoids in neutral sucrose gradients suggested that the number of supercoils in the average nucleoid had been reduced by prior incubation with novobiocin. In intact cells, novobiocin is required inside the cell for continued inhibition of DNA synthesis, suggesting that it does not act directly on the DNA. Alkaline sucrose gradient profiles of DNA synthesized in the presence of novobiocin in intact cells indicated that the drug inhibited replicon initiation while having little if any effect on chain elongation. These data are consistent with the idea that an activity similar to the bacterial gyrase generates supercoils in mammalian DNA and produces the proper conformation for the initiation of DNA replication.  相似文献   

19.
The rate of DNA synthesis after gamma-irradiation was studied either by analysis of the steady-state distribution of daughter [3H]DNA in alkaline sucrose gradients or by direct assay of the amount of [3H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of gamma-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations.  相似文献   

20.
In higher eukaryotic cells, DNA is tandemly arranged into 10(4) replicons that are replicated once per cell cycle during the S phase. To achieve this, DNA is organized into loops attached to the nuclear matrix. Each loop represents one individual replicon with the origin of replication localized within the loop and the ends of the replicon attached to the nuclear matrix at the bases of the loop. During late G1 phase, the replication origins are associated with the nuclear matrix and dissociated after initiation of replication in S phase. Clusters of several replicons are operated together by replication factories, assembled at the nuclear matrix. During replication, DNA of each replicon is spooled through these factories, and after completion of DNA synthesis of any cluster of replicons, the respective replication factories are dismantled and assembled at the next cluster to be replicated. Upon completion of replication of any replicon cluster, the resulting entangled loops of the newly synthesized DNA are resolved by topoisomerases present in the nuclear matrix at the sites of attachment of the loops. Thus, the nuclear matrix plays a dual role in the process of DNA replication: on one hand, it represents structural support for the replication machinery and on the other, provides key protein factors for initiation, elongation, and termination of the replication of eukaryotic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号