首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The proliferative behaviour induced in the acinar cells of the rat submaxillary gland in response to isoprenaline has been used to examine the transit time of cells from a quiescent (G0) state into the S phase. Cumulative 3H-TdR labelling index curves were constructed to determine the mean time interval (Gis time) between stimulation with isoprenaline and entry into the S phase. Data were collected for the proliferative wave induced by three sequential injections of isoprenaline, and the effects of varying the interval between the second and third injections of isoprenaline, and of changing the dose of the drug, were examined. Intervals of 28, 52 and 76 hr between isoprenaline injections resulted in mean Gis times of 16-2, 20-9 and 25-6 hr respectively. It was concluded that the Gis time depended on the recent history of cells with respect to stimulation, but not division. The results are considered in terms of two models, in one of which the time to leave G0 is variable, whilst in the other the cells leave G0 immediately the stimulus is applied.  相似文献   

2.
A simple stochastic model has been developed to determine the cell cycle kinetics of the isoprenaline stimulated proliferative response in rat acinar cells. The response was measured experimentally, using 3H-TdR labelling of interphase cells and cumulative collections of mitotic cells with vincristine. The rise and fall of the fraction of labelled interphase cells and of metaphase cells is expressed by the product of the proliferative fraction and a difference of probability distributions. The probability statements of the model were formulated and then compared by an iterative fitting procedure to experimental data to obtain estimates of the model parameters. The model when fitted to the combined fraction labelled interphase (FLIW) and fraction metaphase (FMWa) waves gave a mean Gis transit time of 21-2 hr, mean Gis +S transit time of 27-0 hr, and mean Gis + S + G2 transit time of 35-8 hr for a single injection of isoprenaline, where Gis is the initiation to S phase time. When successive injections of isoprenaline were given at intervals of 24 and 28 hr the corresponding values after the third injection were 12-4 hr, 20-8 hr and 25-7 hr respectively. The variance of the Gis phase dropped from 18-1 to 1-3 while the other variances remained unchanged. The estimated proliferative fraction was 0-24 after a single injection of isoprenaline, and 0.31 after three injections of the drug. Independently determined values of the proliferative fraction, obtained from repeated 3H-TdR injections, were 0-21 and 0-36 respectively.  相似文献   

3.
EFFECT OF METHOTREXATE ON THE CELL CYCLE OF L1210 LEUKEMIA   总被引:1,自引:0,他引:1  
The influence of methotrexate (MTX) on the proliferative activity of cells in different phases of cell cycle has been studied. MTX (5 mg/kg) was injected i.p. 3 days after the inoculation of 5 × 106 leukemia cells into F1 (DBA × C57 BL) mice. It was shown that MTX causes degeneration of cells, being in G1- as well as in S-phase at the time of drug injection. Incorporation of 3H-TdR was suppressed for a period ranging from 2 to 12 hr after MTX administration, which is demonstrated by the decrease in the number of grains per cell. The number of cells labeled after 3H-TdR injection was also sharply decreased during this period. For a period of 3 until 15 hr after MTX administration the mitotic index decreased significantly as a result of inhibition of DNA synthesis. The blocking of the G1-S transition was evident during 4 hr after MTX. Thereafter the G1-S transition proceeds at a rate which is practically equal to that for nontreated controls. MTX did not inhibit transition to mitosis of cells being in G2-phase and in a very late S-phase at the time of drug injection. The sensitivity of G1-cells to the cytocidal effect of MTX shows that for L1210 leukemia cells MTX can be classified as a cycle-specific drug killing both G1 and S-cells rather than S-phase specific agent with self-limitation.  相似文献   

4.
Resting cells in tumours present a major problem in cancer chemotherapy. In the plateau phase of growth of the murine JB-1 ascites tumour (i.e. 10 days after 2–5 × 106 cells i.p.) large fractions of non-cycling cells with G1 and G2 DNA content (Q1 and Q2 cells) are present, and the fate of these resting cells was investigated after treatment with l-β-d-arabinofuranosylcytosine (Ara-C). The experimental work consisted of growth curves, percentage of labelled mitoses curves after continuous labelling with 3H-TdR, and cytophotometric determination of single-cell DNA content in unlabelled tumour cells. Treatment with an i.p. single injection of Ara-C 200 mg/kg in the plateau JB-1 tumour resulted in a significant reduction in the number of tumour cells 1 and 2 days later as compared with untreated controls, while no difference in the number of tumour cells was observed after 3 days. In tumours prelabelled with 3H-TdR 24 hr before Ara-C treatment, a significant decrease in the percentage of labelled mitoses was observed 6–8 hr later followed by a return to the initial value after 12 hr, and a new pronounced fall from 20 hr after Ara-C. The second fall in the percentage of labelled mitoses disappeared when the labelling with 3H-TdR was continued also after Ara-C treatment. Cytophotometry of unlabelled tumour cells prelabelled for 24 hr with 3H-TdR before Ara-C treatment showed 20 hr after Ara-C a pronounced decrease in the fraction of Qt cells paralleled by an increase in the fraction of unlabelled cells with S DNA content. These results indicate recycling of resting cells first with G2 and later with Gx DNA content, which contribute to the regrowth of the tumours.  相似文献   

5.
The proliferative behaviour induced in the acinar cells of the rat submaxillary gland in response to isoprenaline has been used to examine the transit time of cells from a quiescent (Go) state into the S phase. Cumulative 3H-TdR labelling index curves were constructed to determine the mean time interval (Gis time) between stimulation with isoprenaline and entry into the S phase. Data were collected for the proliferative wave induced by three sequential injections of isoprenaline, and the effects of varying the interval between the second and third injections of isoprenaline, and of changing the dose of the drug, were examined. Intervals of 28, 52 and 76 hr between isoprenaline injections resulted in mean Gis times of 16-2, 20-9 and 25-6 hr respectively. It was concluded that the Gis time depended on the recent history of cells with respect to stimulation, but not division. The results are considered in terms of two models, in one of which the time to leave Go is variable, whilst in the other the cells leave Go immediately the stimulus is applied.  相似文献   

6.
The number of dividing and DNA-synthesizing cells in excised pea roots can be regulated by eliminating the carbohydrate normally supplied in the culture medium. When the excised roots were allowed to remain for 24 hr in a medium lacking carbohydrate, the number of mitotic figures and tritiated thymidine (H3-T) labeled cells was reduced almost to zero. After an additional 24 hr in the incomplete culture medium, 15% of the interphase cells were H3-T labeled, the percentage of the cells that were dividing never exceeded 1.4, and 30% of these were H3-T labeled. When the roots remained in the deficient medium for 72 hr, neither cell division nor cells synthesizing DNA were observed. Upon addition of 2% sucrose, cell division and DNA synthesis were resumed in the roots that were maintained for 24 or 72 hr without an exogenous carbohydrate supply. It has been hypothesized that some proliferative systems consist of two cellular subpopulations which selectively stop or remain in either the pre-DNA synthetic (G1) or post-DNA synthetic (G2) periods of the mitotic cycle. The addition of sucrose, H3-T, and 5-aminouracil to the medium, after the roots had been maintained for 24 hr without a carbohydrate, indicated that most of the proliferative cells in the roots had accumulated in either G1, a quasi-G1 condition, i.e., DNA synthesis stopped sometime before completion, or G2 periods of interphase; the majority, however, were in G1 or quasi-G1 conditions. The results suggested that DNA synthesis (S period) and mitosis or the onset of these processes have the highest metabolic requirements in the mitotic cycle and that G1 and G2 were the most probable states for proliferative cells in a meristem with a low metabolic level.  相似文献   

7.
After adrenalectomy in adult male rats 3H-TdR incorporation into the liver parenchymal cells is increased 4–8 times and the mitotic index rises from 0–31 % to 1–3%; this is inhibited by corticosterone. After hepatectomy the serum corticosterone level increases from 18 μg/100 ml to 57 μg/100 ml. The corticosterone binding capacity of the serum declines from 2–06 to 0–17. The activity of tyrosine transaminase doubles, whereas the incorporation of 3H-TdR into the liver cells is decreased by a factor of 5–7. Thereafter the binding capacity increases again and reaches, 24 hr after operation, a value of 3–82. The tyrosine transaminase activity and the serum corticosterone content return to normal. 3H-TdR incorporation, however, increases by a factor of 7-7 of the initial value. We concluded that in the first few hours after partial hepatectomy corticosterone blocks the liver cells in G1 and an accumulation of the cells occurs at this cell cycle phase. Folio wing the binding of the corticosterone by serum proteins a little later the liver cells enter the S-phase synchronously.  相似文献   

8.
The growth kinetics of an established human lymphoma cell line were analyzed by a variety of techniques utilizing various cell inocula (5 x 104 - 5 x 105 cells) dispensed into 60 mm diameter dishes. Techniques included pulse-labeled mitosis (PLM), continuous labeling with 3H-TdR, time-lapse photography (TLP), cell counts by electronic particle counter, and DNA histography obtained by pulse cytophotometry (PCP). There were no significant differences among values determined for any kinetic parameters as a function of cell concentration. the average doubling time of exponentially growing cells, regardless of cell inoculum, was 44.1 hr. the generation time determined by PLM was 31.1 hr with a SD of 4.7 hr. Transit times for each stage were: TG1= 10.6 hr, Ts= 9.9 hr, TG2= 9.9 hr, and Tm= 0.7 hr. Repeated experiments using continuous labeling with 3H-TdR demonstrated a TG2 of 6.3 hr. the longer value determined by PLM is possibly due to the technical manipulations of this procedure which may delay pulse-labeled cells from resuming cell cycle transit. Hence, values for cell cycle stages were recalculated to give TG1= 14.1 hr, Ts= 9.9 hr, TG2 = 6.3 hr, and Tm= 0.7 hr. These results were used to compute the size of each cell cycle stage compartment pool and corresponded very closely to values defined directly by PCP. TLP analysis considered only cells that produced colonies of at least thirty-two cells. Generation times ranged from 8 to 89 hr and showed a positive skewness. the average value measured for 330 divisions was 34.5 hr with a SD of 13.2 hr. Thus, the variance predicted by curve fitting of the PLM data did not correlate with that defined by time-lapse photography nor did it encompass the range in generation times observed directly by TLP. There was a positive correlation between sister-sister cell generation times (+0.66) but no relation was noted for mother-daughter values.  相似文献   

9.
THE SPERMATOGONIAL STEM CELL POPULATION IN ADULT RATS   总被引:2,自引:0,他引:2  
Radioautographed whole mounted seminiferous tubules from adult rat testes were used to analyse undifferentiated type A spermatogonia at various intervals up to 81 hr following a single injection of 3H-TdR. the data obtained led to the identification of the spermatogonial stem cell and to the formulation of a new model for spermatogonial renewal and differentiation. Undifferentiated type A cells were morphologically alike, but were topographically classified as (1) isolated or (2) paired and aligned. Although labeled isolated A cells were scattered over most stages of the seminiferous epithelium, their proliferative activity varied with the stage; their labeling index was 20-30% in stages I and II, but less than 1% in stages VII and VIII. By tracing the labeled divisions of isolated A spermatogonia in time, it was seen that some daughter cells became separated from one another to form two new isolated cells, while others remained together as paired A spermatogonia. Analysis of two successive waves of labeled mitoses revealed that most paired A spermatogonia continued to proliferate forming four aligned A cells, many of which divided again to produce a chain of eight and so on. the greatest incidence of labeling among paired and aligned A spermatogonia occurred in stages XIII-III. In stage I, where the labeling index was 50%, the calculated proliferative fraction was 1 for these spermatogonia. Between stages II and V, they began to leave mitotic cycle, and during stage V this entire cohort morphologically transformed into A1 spermatogonia. Labeled metaphase curves for undifferentiated A spermatogonia were distinct from any of the curves previously constructed for the six classes of differentiating spermatogonia, especially because of particularly long S and G2 phases in the former. the cell cycle time of paired and aligned A cells was 55 hr, compared to an average of 42 hr for differentiating types A2 to B.  相似文献   

10.
Mild abrasion of rat tracheal epithelium results in irreversible damage to the superficial cells and stimulates the viable basal cells to participate in a nearly synchronous wave of DNA synthesis and mitosis. For the growth population as a whole, DNA synthesis started at 14 hr after injury and persisted for 16 hr. The duration of S in individual cells was determined autoradiographically by identifying the time at which a second pulse of DNA precursor (14C-TdR) was no longer incorporated by cells labelled with 3H-TdR at the onset of S. S was found to be 8–9 hr long. It was also determined that cells entering S at later times synthesized DNA for the same 8–9 hr period. TG2 was calculated to be 21/2–31/2 hr by subtraction of Ts and 1/2TM from the period from onset of DNA synthesis to metaphase. By making a second denuding lesion adjacent to the first injury, the cells were stimulated through at least another period of S. At the peak of the second wave of DNA synthesis (50 hr after injury) 14C-TdR was present in the same cells which had incorporated 3H-TdR administered at the mid-point of the preceding synthetic phase. The 28-hr interval between these two peaks of synthesis is the measure of cell cycle duration for these regenerating tracheal epithelial cells.  相似文献   

11.
The initial effect of an injection of TdR-5-3H (1 μCi/g body weight; 6 Ci/mmol) in the cheek pouch epithelium of the Syrian hamster is an increase in the mitotic index. The increase is observed 1–5 hr after injection, depending upon the time of day when the injection is given, and is followed by compensatory variations in mitotic index. This deviation from the normal circadian rhythm in the mitotic index appears to depend on the fraction of G2-cells at the time of injection. The main effect is a shortening of tg2. No effect is observed after injection of non-radioactive TdR or isotonic saline. The results of the present experiment emphasize that unexpected results may be obtained when using mitotic indices from animals labelled with 3H-TdR, as well as the risks of using the PLM-method in a partially synchronized system.  相似文献   

12.
In the rat small bowel mucosa significant variation was found in both the labelling and the mitotic indices with time of day. The zenith and the nadir of labelling and mitotic activity coincided at 15.00 and 02.00 hours respectively. Small changes were found in the ‘cut-off’ position, but this variation in proliferative compartment size was insufficient to account for the comparatively wider fluctuations in proliferative indices. Measurements of the rate of entry into mitosis, using metaphase arrest with vincristine at three widely separated times during the day, showed no significant change. Changes in the growth fraction or in the birth rate as measured cannot account for diurnal variation in the proliferative activity of the small bowel mucosa. We propose a hypothesis which involves diurnal fluctuations in the transit times through G1 and through G2.  相似文献   

13.
Single and multiple injections of 3H-TdR have been used for measuring the rate of proliferation in morphologically defined cell populations of guinea-pig bone marrow that are committed to erythroid differentiation. The conclusions are based on the analysis of absolute cell numbers in the maturational compartments, the labeling and mitotic indices, labeled mitotic curves, pulse and chase grain counts over dividing and interphase cells, and on the rate of labeling during multiple, repeated injections of 3H-TdR. The average duration of S and the rate of cycling is similar in all maturational compartments of the erythron. The majority of cells progress to the next maturational compartment by the time they divide for the second time. All proerythroblasts and basophilic erythroblasts are in cycle. Polychromatic erythroblasts incapable of incorporating 3H-TdR reach the orthochromatic population in the span of 5–6 hr. The orthochromatic population is renewed every 20–24 hr. The number of divisions between the proerythroblast and orthochromatic erythroblast does not exceed four and some cells may undergo only two divisions during the maturation pathway. Cell input from a progenitor cell population contributes to the maintenance of the erythron. The kinetic behavior of progenitor cells is similar to that of proerythroblasts. By the time of their second division, progenitor cells may reach either the proerythroblast or basophilic erythroblast compartments. The kinetic behavior of basophilic transitional cells corresponds to the predicted behavior of the erythroblast progenitor cell pool. Several of the conclusions are based on the assumption that grain count halving is the result of cell division. In view of the evidence discussed, this assumption in the present studies seems justified.  相似文献   

14.
The population of periodontal ligament (PDL) fibroblasts examined in this study may include osteogenic progenitor cells. PDL fibroblast and osteoblast kinetics in the periodontal ligament of the rat were measured following orthodontic stimulation of bone formation. Both single and multiple injections of tritiated thymidine (3H-TdR) were used. In single injection experiments, the peak percentage of PDL fibroblasts labeled with 3H-TdR is 15% at 22 hr post-stimulation. In multiple injection experiments, the total percentage of fibroblasts in the PDL which respond by synthesizing DNA is 50%. 3H-TdR-Iabeled osteoblasts appear at the same rate as, but with a time delay after, the labeled fibroblasts. Following stimulation, the most likely source of osteoblasts at the bone-forming site is not only fibroblasts which make DNA, divide, then differentiate, but also fibroblasts which either are differentiated to osteoblasts without DNA synthesis and cell division, or are released from G2 block by the orthodontic stimulation.  相似文献   

15.
The partially synchronized cell system of the hamster cheek pouch epithelium shows a characteristic diurnal rhythm of cell proliferation. Bolus injections of methotrexate (Mtx) in both lethal (10 g/m2) and non-lethal (2 g/m2) doses were found to inhibit cell-cycle progression primarily by impairing the G1/S transition. the results were obtained by flow cytometric DNA analysis. the inhibitory effect of Mtx manifested itself as a relative decrease of the S fraction (drug-effector phase), and was found to be dependent both on the dose and on the time of the day it was given. A bolus injection of Mtx was given either at 1200 hr (when a minimal number of cells are in S phase) or at 0200 hr (when a maximum number of cells are in S phase). the greatest cumulative decrease in S fraction was seen when the injection was given at 1200 hr. the time between injection and the effect (seen as a decrease in S fraction) was independent of the time of the Mtx injection, but seemed instead to be related to the natural diurnal period of increasing flux from G1 to S phase (at the onset of the dark period). the main effect (the relative decrease in S fraction) was repeated during the following 24-hr period, pointing to a protracted effect of Mtx on G1 cells. G1 cells affected by the initial high Mtx plasma concentration seem to be responsible for the reduced influx into S phase in both the first and second 24-hr period. In earlier toxicological studies, the survival rate of hamsters was dependent on the time of injection and was highest after injection at 1200 hr. Thus maximum cytokinetic effect on epithelial cells was found at the time of the day when there was a minimum lethal effect on the animal.  相似文献   

16.
Mean transit times as well as variances of the transit times through the individual phases of the cell cycle have been determined for the crypt epithelial cells of the jejunum of the mouse. To achieve this the fraction of labelled mitoses (FLM) technique has been modified by double labelling with [3H] and [14C]thymidine. Mice were given a first injection of [3H]thymidine, and 2 hr later a second injection of [14C]thymidine. This produces a narrow subpopulation of purely 3H-labelled cells at the beginning of G2-phase and a corresponding subpopulation of purely 14C-labelled cells at the beginning of the S-phase. When these two subpopulations progress through the cell cycle, one obtains FLM waves of purely 3H- and purely 14C-labelled mitoses. These waves have considerably better resolution than the conventional FLM-curves. From the temporal positions of the observed maxima the mean transit times of the cells through the individual phases of the cycle can be determined. Moreover one obtains from the width of the individual waves the variances of the transit times through the individual phases. It has been found, that the variances of the transit times through successive phases are additive. This indicates that the transit times of cells through successive phases are independently distributed. This statistical independence is an implicit assumption in most of the models applied to the analysis of FLM curves, however there had previously been no experimental support of this assumption. A further result is, that the variance of the transit time through any phase of the cycle is proportional to the mean transit time. This implies that the progress of the crypt epithelial cells is subject to an equal degree of randomness in the various phases of the cycle.  相似文献   

17.
The proliferation kinetics of cells of the line NHIK 1922 grown in vitro and as solid tumours in the athymic mutant nude mouse has been studied. In vitro, growth curves were determined for exponentially growing populations and for populations synchronized by mitotic selection. The phase durations for these populations were determined by flow cytofluorometric measurements of DNA-histograms and pulsed incorporation of [3H]TdR respectively. The generation time and the phase durations for synchronized populations were found to be about equal to those for exponentially growing populations. The duration of the phases G1, S and G2+ M was found to be 8·5–9·5, 11·0–12·0 and 6·0–6·5 hr respectively, i.e. the generation time was 26·5–27·0 hr. The proliferation kinetics in vivo were studied by flow cytofluorometry and by the technique of percentage labelled mitoses. The median duration of S-phase and (G2+ M)-phase in vivo was found to be approximately the same as that observed in vitro, while the median duration of G1-phase was found to be approximately 5 hr longer in vivo than under the present in vitro growth conditions. The growth fraction in vivo was estimated to be approximately 50%. The non-proliferative compartment of the tumour cells was found to consist mainly of cells with the DNA-content of cells in G1-phase. It is concluded that the reduced rate of proliferation of NHIK 1922 cells in vivo is correlated with alterations in the duration of G1-phase and, hence, the proportion of cells in G1-phase.  相似文献   

18.
Hairless male mice were given 2 mg Bleomycin i.p. on two successive days. At different time intervals from 1 to 10 days after the last Bleomycin injection, groups of animals were killed and water extracts of homogenized skin were made. These extracts, supposed to contain the epidermal G1 and G2 chalones, were injected into female hairless mice, and their growth inhibitory potency determined by two methods. 5 mg of lyophilized crude skin extract were injected i.p. together with Colcemid, and the animals killed 4 hr later. The number of Colcemid-arrested mitoses was determined, and was considered to be a measure of the G2 inhibitor present in the skin extracts. 10 mg of the same extracts were injected i.p., and these animals also got 3H-TdR i.p. 12 hr later, and were killed after a subsequent 30 min. The epidermal LI was determined, and was considered to be a measure of the epidermal G1 factor in the skin extracts. The results obtained were compared to the effect of Bleomycin alone and to the effects of skin extracts from non-Bleomycin-treated animals. The results show that Bleomycin provoked slight alterations in the growth-inhibitory potency of the G1 chalone, whereas significant effects were seen in the G2 chalone. There was an increased amount of growth-inhibiting factors on days 2 and 3, and on days 8–10. The results are discussed and it is concluded that the most probable hypothesis is that Bleomycin, in addition to its known inhibitory effect on epidermal cell proliferation, exerts growth inhibition by accumulation of cells with high growth inhibitory potency. An initial, additional direct effect of Bleomycin on the chalone system cannot be excluded.  相似文献   

19.
The proliferation of hepatocytes in the liver of 3-week-old rats has been investigated by autoradiographic methods. This investigation is a continuation of earlier work on the same topic (Schultze & Maurer, 1972; 1973). 21 days after birth, 102 rats received a single injection of 3H-TdR. the percentage of labelled mitoses was then determined 1 hr later and at various times throughout the interval up to 12 days after application of 3H-TdR. In agreement with earlier work, a first peak of labelled mitoses was found 7 hr after 3H-TdR injection. the area under the peak indicates an S phase duration of 8 hr. In addition a second very broad peak of labelled mitoses was found between 2 and 12 days after pulse labelling. the analysis of the results leads to the conclusion that the hepatocytes of the 3-week-old rat have a growth fraction close to 1 and a doubling time of 6–7 days. This is at variance with earlier results of Post, Huang & Hoffman (1963) and Grisham (1969) who had derived a value of 21.5 hr for the duration of the cell cycle and a value of only 0. 1–0.2 for the growth fraction of the hepatocytes.  相似文献   

20.
CYTODYNAMICS IN THE THYMUS OF YOUNG ADULT MICE:   总被引:1,自引:0,他引:1  
Cell proliferation and cell loss in the thymic blast cell population were studied in young adult mice by (1) stathmokinetic methods combined with an analysis of the PLMe-curve after a pulse 3H-TdR, and (2) nigrosin-dye exclusion combined with 3H-TdR-autoradiography. It was calculated that about 17% of the blast cells do not progress into mitosis within the period of an average cell cycle. The dye exclusion studies indicated a rate of blast cell death of about 2–5 %/hr. The two methods of assessing blast cell loss (death) support each other very well. In spite of these findings scintillation countings on thymuses removed from 1 to 17 hr after 3H-TdR injection showed fairly constant levels of thymic radioactivity. This suggests a very extensive reutilization of 3H-labelled break-down products from dying blast cells. The very sparse labelling of pyknotic thymocytes strongly suggests that thymic blast cells do not become pyknotic. The rate of small thymocyte production and disappearance was studied by pulse and repeated 3H-TdR labelling techniques combined with dye exclusion studies and pyknotic counts. The data from the repeated labelling experiment were analysed by use of a model based on the assumption of first order kinetics of small viable, dead, and pyknotic thymocytes. The rate of cell production was estimated to 1–6 %/hr whereas the rates of cell loss due to disintegration, i.e. supravital stainability and nuclear pyknosis, were calculated to 0–02 %/hr and 0–0006 %/hr respectively. Cell loss due to disintegration was less than 2 % of the total loss of small thymocytes. It was concluded that pyknotic counts are a useless method of assessing the cell death in the population of thymic blast cells and small thymocytes. On the basis of a model for thymocyte proliferation, production and loss it is suggested that about 45 % of the small viable thymocytes re-enter the generative cell pool, whereas about 55% disappear by emigration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号