首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemoglobins of three baboons, Theropithecus gelada, Papio hamadryas- and Papio anubis, were purified and their oxygen equilibrium characteristics were studied. (a) Oxygen affinity, as expressed by P50, oxygen partial pressure for 50% oxygen binding, was in the order of gelada hemoglobin > anubis hemoglobin > hamadryas hemoglobin although the differences were small. (b) The presence of 2,3-diphosphoglycerate reduced their oxygen affinity in a similar manner. The effect on baboon hemoglobins was greater than that on human and Japanese monkey hemoglobins. (c) The intensity of the Bohr effect, as expressed by ?ΔlogP50ΔpH, at pH 7·4 agreed well with each other and the value was 0·62 in the presence of 2 mm diphosphoglycerate and 0·52 in its absence. These results indicate that phenotypic adaptation (acclimatory) may play an important role in the adaptation of gelada baboon to high altitudes.  相似文献   

2.
When oxygen binds to one of the subunits of hemoglobin, the oxygen affinity of the other subunits is enhanced. This cooperative interaction of the subunits is initiated by the movement of the heme plane toward the proximal side when oxygen binds to the heme. This motion is transmitted to the surface of the globin through a “reaction channel” consisting of a group of atoms whose motion is well correlated. Considering the detailed geometry and X-ray diffraction data of the mean square displacement of the atoms surrounding the heme, a simple model for the heme plane oscillations is developed. Using this model, the natural frequency of oscillations is shown to be ≈5 × 1011 Hz. This result, along with the recent experimental data on the kinetics of the conformational changes of the heme, points to the possibility of radiation influencing the oxygen affinity of hemoglobin. If such an effect exists, it is likely that the oxygen affinity will be enhanced by the radiation.  相似文献   

3.
In solution, the oxygen affinity of hemoglobin in the T quaternary structure is decreased in the presence of allosteric effectors such as protons and organic phosphates. To explain these effects, as well as the absence of the Bohr effect and the lower oxygen affinity of T-state hemoglobin in the crystal compared to solution, Rivetti C et al. (1993a, Biochemistry 32:2888-2906) suggested that there are high- and low-affinity subunit conformations of T, associated with broken and unbroken intersubunit salt bridges. In this model, the crystal of T-state hemoglobin has the lowest possible oxygen affinity because the salt bridges remain intact upon oxygenation. Binding of allosteric effectors in the crystal should therefore not influence the oxygen affinity. To test this hypothesis, we used polarized absorption spectroscopy to measure oxygen binding curves of single crystals of hemoglobin in the T quaternary structure in the presence of the "strong" allosteric effectors, inositol hexaphosphate and bezafibrate. In solution, these effectors reduce the oxygen affinity of the T state by 10-30-fold. We find no change in affinity (< 10%) of the crystal. The crystal binding curve, moreover, is noncooperative, which is consistent with the essential feature of the two-state allosteric model of Monod J, Wyman J, and Changeux JP (1965, J Mol Biol 12:88-118) that cooperative binding requires a change in quaternary structure. Noncooperative binding by the crystal is not caused by cooperative interactions being masked by fortuitous compensation from a difference in the affinity of the alpha and beta subunits. This was shown by calculating the separate alpha and beta subunit binding curves from the two sets of polarized optical spectra using geometric factors from the X-ray structures of deoxygenated and fully oxygenated T-state molecules determined by Paoli M et al. (1996, J Mol Biol 256:775-792).  相似文献   

4.
Hb_(广州—杭州)(HbGH)是我国广州和杭州先后发现的一种异常血红蛋白新品种。经DEAE—葡聚糖凝胶柱层析分离纯化后,在0.05mol/L Tris-HCl,0.1mol/LNaCl,30℃和不同pH(pH7.0—7.8)的条件下,分别测定它的氧平衡曲线,并以纯化HbA作对照。结果发现HbGH的氧亲和力比HbA的高,但它的Bohr效应和亚基间协同作用正常,而且对2,3—DPG仍有正常效应。本文还扼要讨论了HbGH的结构与功能关系。  相似文献   

5.
It is well known that nitric oxide (NO), the most important vasodilator agent, plays an important role in lowering vascular resistance in the human umbilical-placental circulation and that its deficiency is related to the pathogenesis of pre-eclamptic disorder. Besides it has recently been demonstrated that human hemoglobin (HbA) is able to transport nitric oxide, as S-nitrosohemoglobin (SNO-Hb), from the arterial to the venous blood. In the present study we examine the functional properties of the adult and fetal nitrosated hemoglobins to see if the double transport of oxygen and NO may influence the fetal oxygenation and the relation between maternal and fetal blood. Our results show that S-nitrosation significantly increases the oxygen affinity of the adult Hb (HbA) with respect to native protein (no-nitrosated) while the functional properties of HbF are less influenced. The oxygen affinity modification, found for SNO-HbA, was ascribed to the nitrosation of cysteine beta 93: really, the same residue is also present in the gamma chains of fetal hemoglobin, while the increase of affinity is less evidenced; hence, it is probable that the 39 aminoacidic substitutions between beta and gamma chains allay the effects of S-nitrosation. As regards the physiological modulators (protons, chloride ions, 2,3-diphosphoglyceric acid, and temperature), they influence the oxygen affinity of the two hemoglobins S-nitrosated, in equal mode with respect to the native forms determining the same variation on the oxygen affinity. Hence, our results evidence the fact that the NO release by SNO-HbA "in vivo" would be limited to regions of extremely low oxygen tension (such as hypoxic regions), while in fetus, SNO-HbF would unload nitric oxide and oxygen at pressure values close to normal.  相似文献   

6.
Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (beta 99 Asp-->Tyr) have revealed a previously unknown quaternary structure called "quaternary Y" and suggested that the new structure may represent an important intermediate in the cooperative oxygenation pathway of normal hemoglobin. Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additional beta 99 mutants (Asp beta 99-->Val, Gly, Asn, Ala, His) to test for consistency between their energetics and those of the intermediate species of normal hemoglobin. Overall regulation of oxygen affinity in hemoglobin Ypsilanti is found to originate entirely from 2.6 kcal of quaternary enhancement, such that the tetramer oxygenation affinity is 85-fold higher than for binding to the dissociated dimers. Equal partitioning of this regulatory energy among the four tetrameric binding steps (0.65 kcal per oxygen) leads to a noncooperative isotherm with extremely high affinity (pmedian = .14 torr). Temperature and pH studies of dimer-tetramer assembly and sulfhydryl reaction kinetics suggest that oxygenation-dependent structural changes in hemoglobin Ypsilanti are small. These properties are quite different from the recently characterized allosteric intermediate, which has two ligands bound on the same side of the alpha 1 beta 2 interface (see ref. 1 for review). The combined results do, however, support the view that quaternary Y may represent the intermediate cooperativity state of normal hemoglobin that binds the last oxygen.  相似文献   

7.
Hb Calais [β 76 (E20) Ala → Pro] is a new human hemoglobin variant displaying a decreased oxygen affinity. The only electrophoretical difference with Hb A was a slight more acidic isoelectric point. A 2-fold decrease in the oxygen affinity was found by equilibrium measurements performed in a suspension of intact red blood cells and in the lysate. It was confirmed by kinetic studies of the purified abnormal hemoglobin. The rte of methamoglobin formation at 37°C of Hb Calais was also increased realtive to Hb A. The mechanism by which the Pro for Ala substitution of an external residue in the β-chains results in these profound functional abnormalities is nuclear. Subtle changes at the heme pocket, at a distance from teh mutation, may be a plausible explanation for the effects observed.  相似文献   

8.
Bovine hemoglobin was cross-linked with glutaraldehyde, resulting in high oxygen affinity polymeric hemoglobin dispersions of varying molecular weight distributions. High oxygen affinity acellular oxygen carriers were designed in order to exhibit oxygen release profiles closer to that of human red blood cells (RBCs), without exhibiting the inherent increased vasoactivity that occurs with low oxygen affinity acellular oxygen carriers (1, 2). Oxygen dissociation curves were measured for polymerized hemoglobin dispersions at various pH values (7.0, 7.4, and 8.0) and chloride ion concentrations. Unmodified hemoglobin showed an increase in oxygen affinity with increased chloride ion concentration and a decrease in oxygen affinity with increased pH, as was previously demonstrated in the literature (3). For glutaraldehyde-polymerized hemoglobin dispersions, the ability of the oxygen affinity to respond to changes in Bohr H+ and Cl- concentration was weakened. However, at acidic physiological pH (pH = 7), the Bohr effect was still present at high Cl- concentrations. Thus, the Bohr effect maintained some dependency on the Cl- concentration.  相似文献   

9.
The effects of oxygen and a second ligand, the anti-sickling agent butylurea, on the hemoglobin S gel-solution phase equilibrium have been studied. The results have been analyzed using thermodynamic properties of the system. In particular, the solubility of deoxy hemoglobin S as a function of butylurea concentration was determined and the thermodynamic analysis shows that there are at least two cooperatively linked butylurea binding sites. Liquid phase oxygen binding studies at various butylurea concentrations show that the linkage between oxygen and butylurea binding is small. The influence of oxygen and butylurea on hemoglobin S solubility was determined by birefringence measurements. The results were interpreted by use of the Gibbs-Duhem equation which combined ligand binding expressions with the non-ideal solution properties and properties of the gel phase. The predicted influence of oxygen and butylurea upon the solubilities of hemoglobin S agrees with experimentally determined values.  相似文献   

10.
Studies on the interaction of zinc with human hemoglobin   总被引:3,自引:0,他引:3  
Zn has previously been shown to increase the oxygen affinity of both normal and sickle red blood cells. Experiments are presented which demonstrate that the oxygen affinity effect of Zn is due to a Zn-hemoglobin binding mechanism rather than a Zn-2,3 diphosphoglycerate binding mechanism. Further a large shift (6 mm Hg) in the oxygen affinity of a red cell-saline suspension occurs with a low Zn/hemoglobin (tetramer) molar ratio (0.4). Zn had no influence on the Bohr effect of hemoglobin but it did decrease the Hill coefficient. Hemoglobin binding experiments using partially purified hemoglobin indicated that Zn can bind to more than one amino acid residue but it appears that the amino acid residue with the highest binding capacity for Zn is also the residue involved in the oxygen affinity effect of Zn. Hydrogen ion concentration (pH 5–8) had no influence on the Zn/hemoglobin ratios obtained in these binding experiments. The possible (and the improbable) Zn binding sites on the hemoglobin molecule are discussed.  相似文献   

11.
One of the main difficulties with blood substitutes based on hemoglobin (Hb) solutions is the auto-oxidation of the hemes, a problem aggravated by the dimerization of Hb tetramers. We have employed a method to study the oxyHb tetramer-dimer equilibrium based on the rate of auto-oxidation as a function of protein concentration. The 16-fold difference in dimer and tetramer auto-oxidation rates (in 20 mM phosphate buffer at pH 7.0, 37 degrees C) was exploited to determine the fraction dimer. The results show a transition of the auto-oxidation rate from low to high protein concentrations, allowing the determination of the tetramer-dimer dissociation coefficient K4,2 = [Dimer] 2/[Tetramer]. A 14-fold increase in K4,2 was observed for addition of 10 mM of the allosteric effector inositol hexaphosphate (IHP). Recombinant hemoglobins (rHb) were genetically engineered to obtain Hb with a lower oxygen affinity than native Hb (Hb A). The rHb alpha2beta2 [(C7) F41Y/(G4) N102Y] shows a fivefold increase in K4,2 at pH 7.0, 37 degrees C. An atmosphere of pure oxygen is necessary in this case to insure fully oxygenated Hb. When this condition is satisfied, this method provides an efficient technique to characterize both the tetramer-dimer equilibrium and the auto-oxidation rates of various oxyHb. For low oxygen affinity Hb equilibrated under air, the presence of deoxy subunits accelerates the auto-oxidation. Although a full analysis is complicated, the auto-oxidation studies for air equilibrated samples are more relevant to the development of a blood substitute based on Hb solutions. The double mutants, rHb alpha2beta2 [(C7) F41Y/(G4) N102A] and rHb alpha2beta2 [(C7) F41Y/(E10) K66T], show a lower oxygen affinity and a higher rate of oxidation than Hb A. Simulations of the auto-oxidation rate versus Hb concentration indicate that very high protein concentrations are required to observe the tetramer auto-oxidation rate. Because the dimers oxidize much more rapidly, even a small fraction dimer will influence the observed oxidation rate.  相似文献   

12.
Monomethoxypolyoxyethylene (Mw = 5000) was covalently linked to human hemoglobin via an amide bond formed between amino groups of the protein and a carboxylic group introduced onto the polymer. The conjugates thus obtained have a molecular size corresponding to that of a globular protein with a molecular weight of about 190 000. Their oxygen-binding properties depend upon the initial conformation of the hemoglobin and reaction pH: hemoglobin modified in the deoxy state exhibited a lower oxygen affinity than that modified in the oxy state, and the lower the reaction pH, the lower the oxygen affinity of polymer-linked hemoglobin. However, the affinity of modified hemoglobin is always higher than that of native hemoglobin. On the other hand, when deoxyHb was complexed with organic phosphates during the condensation reaction, the resulting conjugates exhibited oxygen-binding characteristics quite similar to those of native hemoglobin, i.e., the same oxygen affinity, modified cooperativity and the same alkaline Bohr effect. Finally, in order to decrease the oxygen affinity of hemoglobin conjugates, the polymer was coupled to deoxy hemoglobin previously covalently modified with pyridoxal phosphate. The oxygen affinity of such conjugates was in fact as low as that of the initial pyridoxylated hemoglobin.  相似文献   

13.
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.  相似文献   

14.
Site-directed mutagenesis of an important subunit contact site, Asp-99(beta), by a Lys residue (D99K(beta)) was proven by sequencing the entire beta-globin gene and the mutant tryptic peptide. Oxygen equilibrium curves of the mutant hemoglobin (Hb) (2-15 mM in heme) indicated that it had an increased oxygen affinity and a lowered but significant amount of cooperativity compared to native HbA. However, in contrast to normal HbA, oxygen binding of the recombinant mutant Hb was only marginally affected by the allosteric regulators 2,3-diphosphoglycerate or inositol hexaphosphate and was not at all responsive to chloride. The efficiency of oxygen binding by HbA in the presence of allosteric regulators was limited by the mutant Hb. At concentrations of 0.2 mM or lower in heme, the mutant D99K(beta) Hb was predominantly a dimer as demonstrated by gel filtration, haptoglobin binding, fluorescence quenching, and light scattering. The purified dimeric recombinant Hb mutant exists in 2 forms that are separable on isoelectric focusing by about 0.1 pH unit, in contrast to tetrameric hemoglobin, which shows 1 band. These mutant forms, which were present in a ratio of 60:40, had the same masses for their heme and globin moieties as determined by mass spectrometry. The elution positions of the alpha- and beta-globin subunits on HPLC were identical. Circular dichroism studies showed that one form of the mutant Hb had a negative ellipticity at 410 nm and the other had positive ellipticity at this wavelength. The findings suggest that the 2 D99K(beta) recombinant mutant forms have differences in their heme-protein environments.  相似文献   

15.
In hemoglobin Richmond (beta102 leads to Lys), amino acid substitution has occurred at the same site as the mutation in hemoglobin Kansas (beta102 Asn leads to Thr), a variant with very low oxygen affinity. Although hemoglobin Richmond has been shown to have increased tetramer-dimer dissociation, its oxygen affinity has been inferred to be normal from studies on hemolysates of carriers. We have isolated hemoglobin Richmond and have further studied its properties. We confirm that the oxygen affinity of pure hemoglobin Richmond under conditions similar to those found in vivo is normal. However, the Bohr effect of the variant hemoglobin is markedly abnormal. Its oxygen affinity is low at high pH and high at low pH, relative to hemoglobin A. The tetramer-dimer equilibrium displays a strong pH dependence such that protons promote dissociation. A model is presented in which the structural change in hemoglobin Richmond results in low oxygen affinity, like hemoglobin Kansas. However, the close linkage between tetramer-dimer dissociation and proton concentration seen with hemoglobin Richmond results in normal oxygen affinity at intracellular pH and hemoglobin concentration, and carriers display no hematological abnormalities.  相似文献   

16.
The Gymnothorax unicolor hemoglobin system is characterized by two components, called cathodic and anodic on the basis of their isoelectric point, which were separated by ion-exchange chromatography. The oxygen-binding properties of the purified components were studied in the absence and presence of chloride and/or GTP or ATP in the pH range 6.5-8.0. Stripped cathodic hemoglobin showed a small reverse Bohr effect, high oxygen affinity, and low co-operativity; the addition of chloride only caused a small decrease in oxygen affinity. In the presence of GTP or ATP, the oxygen affinity was dramatically reduced, the co-operativity increased, and the reverse Bohr effect abolished. Stripped anodic hemoglobin is characterized by both low oxygen affinity and co-operativity, and displayed a normal Bohr effect; the addition of chloride increased co-operativity, whereas ATP and GTP significantly modulated oxygen affinity at acidic pH values, enhancing the Bohr effect and giving rise to the Root effect. The complete amino-acid sequences of the alpha and beta chains of both hemoglobins were established; the molecular basis of the functional properties of the hemoglobins is discussed in the light of the primary structure and compared with those of other fish hemoglobins.  相似文献   

17.
We studied the conjugates formed between hemoglobin and sulfated or unsulfated oxidized dextran. It appears that the presence of sulfated groups favors imino bond formation between the protein and the polymer, as the average molecular size of the conjugates is larger in this case. Under neutral conditions, the oxygen-binding properties of the conjugates depend on the presence or absence of oxygen during the coupling reaction. With unsulfated dextran, oxyhemoglobin leads to conjugates with increased oxygen affinity (P 50/P 50 native hemoglobin 0.5) compared to that of free hemoglobin (P 50=4 mm Hg), whereas deoxyhemoglobin leads to conjugates with decreased oxygen affinity (P 50/P 50 native hemoglobin 3). The use of sulfated dextran reinforces this lowering in oxygen affinity, which indicates that sulfated dextran acts as a permanent macromolecular effector of hemoglobin (P 50/P 50 native hemoglobin 4). Moreover, it can be assumed that some of the linkages involve the 2,3-diphosphoglycerate binding site, as the strong effector inositol hexaphosphate has only a slight effect on the oxygen-binding properties of the conjugate prepared in the deoxy state (P 50/P 50 native hemoglobin close to 4.4 and 6, respectively, for unsulfated and sulfated conjugates). Although dextran substituted with benzenehexacarboxylic acid (BHC) leads to a low-oxygen-affinity conjugate when linked to oxyhemoglobin through amide bonds (P 50/P 50 native hemoglobin 5), oxidized dextran modified with BHC leads, with oxyhemoglobin, to a conjugate whose oxygen affinity is close to that of free hemoglobin (P 50/P 50 native hemoglobin 1.2).  相似文献   

18.
The effect of prostaglandin on the affinity of hemoglobin for oxygen was tested on human blood in vitro, using six different prostaglandins at several dosage levels in fresh heparinized blood from normal donors and in stored citrated blood, and using prostaglandin E2 on the blood from four seriously ill patients. No significant alterations in the affinity of hemoglobin for oxygen were dtected. A very small decrease in oxygen affinity in stored blood with high doses of prostaglandin was not statistically significant and would be of no physiologic significance even if real.We conclude that under the circumstances of this experiment prostaglandins do not alter the affinity of hemoglobin for oxygen in human whole blood in vitro.  相似文献   

19.
J M Rifkind  J M Heim 《Biochemistry》1977,16(20):4438-4443
Stripped human hemoglobin was shown to have a high apparent zinc association constant of 1.3 X 10(7) M-1 with a stoichiometry of one zinc for every two hemes. The saturation of this site produces a dramatic 3.7-fold increase in the oxygen affinity. The effect of zinc on the oxygen affinity is interrelated with the interaction of 2,3-diphosphoglyceric acid (2,3-DPG) and hemoglobin. Thus, a smaller zinc effect is observed in the presence of added 2,3-DPG. Information about the location of the zinc-binding site responsible for the increased oxygen affinity has been obtained by comparing the binding of zinc to various hemoglobins. Blocking the beta93 sulfhydryl group decreases the apparent zinc association constant by an order of magnitude. The substitution of histidine-beta143 in hemoglobin Abruzzo [beta143 (H21) His leads to Arg] and hemoglobin Little Rock [beta143 (H21) His leads to Gln] decreases the apparent zinc association constant by two orders of magnitude. The substitution of histidine-beta143 by other amino acids and the reaction of the beta93 sulfhydryl group are known to produce dramatic increases in the oxygen affinity. The binding of zinc to one or both of these amino acids can, therefore, explain the zinc-induced increase in the oxygen affinity.  相似文献   

20.
Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobin structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号