首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ionic strength on the generation of tension and upon the interfilament spacing in living intact and skinned single striated muscle fibers from the walking leg of crayfish (Orconectes) were determined by isometric contraction studies correlated with low-angle X-ray diffraction. Sarcomere lengths were determined by light diffraction. Tensions were induced in intact fibers by caffeine in the bathing medium and by ionophoretic microinjection of calcium. Tensions were induced in skinned fibers by a buffered calcium-EGTA solution. The interfilament spacing of intact and skinned fibers over the range of ionic strengths investigated were determined by X-ray diffraction and correlated with the physiological data. It is demonstrated that the ionic strength affects the tension-generating capacity of the muscle as it affects the chemo-mechanical transform of excitation-contraction coupling. It is further demonstrated that interfilament spacing changes encountered during shortening and with variation in the osmotic strength have no effect upon the tension-generating capacity of muscle.  相似文献   

2.
Hypoxia impairs skeletal muscle function, but the precise mechanisms are incompletely understood. In hypoxic rat diaphragm muscle, generation of peroxynitrite is elevated. Peroxynitrite and other reactive nitrogen species have been shown to impair contractility of skinned muscle fibers, reflecting contractile protein dysfunction. We hypothesized that hypoxia induces contractile protein dysfunction and that reactive nitrogen species are involved. In addition, we hypothesized that muscle reoxygenation reverses contractile protein dysfunction. In vitro contractility of rat soleus muscle bundles was studied after 30 min of hyperoxia (Po2 approximately 90 kPa), hypoxia (Po2 approximately 5 kPa), hypoxia + 30 microM N(G)-monomethyl-L-arginine (L-NMMA, a nitric oxide synthase inhibitor), hyperoxia + 30 microM L-NMMA, and hypoxia (30 min) + reoxygenation (15 min). One part of the muscle bundle was used for single fiber contractile measurements and the other part for nitrotyrosine detection. In skinned single fibers, maximal Ca2+-activated specific force (Fmax), fraction of strongly attached cross bridges (alphafs), rate constant of force redevelopment (ktr), and myofibrillar Ca2+ sensitivity were determined. Thirty minutes of hypoxia reduced muscle bundle contractility. In the hypoxic group, single fiber Fmax, alphafs, and ktr were significantly reduced compared with hyperoxic, L-NMMA, and reoxygenation groups. Myofibrillar Ca2+ sensitivity was not different between groups. Nitrotyrosine levels were increased in hypoxia compared with all other groups. We concluded that acute hypoxia induces dysfunction of skinned muscle fibers, reflecting contractile protein dysfunction. In addition, our data indicate that reactive nitrogen species play a role in hypoxia-induced contractile protein dysfunction. Reoxygenation of the muscle bundle partially restores bundle contractility but completely reverses contractile protein dysfunction.  相似文献   

3.
1. Aplysia buccal muscle E1 can be skinned with saponin in a low ionic strength medium. Pulses of calcium, which were ineffective at causing contraction in intact fibers, elicited contraction in skinned fibers. 2. Tension in skinned fibers increased at [Ca2+] greater than 10(-7) M and was maximal at 6 x 10(-7) M. 10(-5) M [Ca2+] caused irreversible damage to the fibers. 3. Fibers did not exhibit "catch", i.e. they relaxed quickly upon removal of calcium. 4. Optimal pH for tension was 7.0. 5. Contractile responses to calcium pulses were increased by raising "background" [Ca2+] to 10(-7) M. 6. Cyclic AMP (10(-4) and 10(-3) M) had no effect on tension.  相似文献   

4.
The effects of osmotic concentration, ionic strength, and pH on the myofilament lattice spacing of intact and skinned single fibers from the walking leg of crayfish (Orconectes) were determined by electron microscopy and low-angle X-ray diffraction. Sarcomere lengths were determined by light diffraction. It is demonstrated that the interfilament spacing in the intact fiber is a function of the volume of the fiber. It is also shown that the interfilament spacing of the skinned (but not of the intact) fiber is affected in a predictable manner by ionic strength and pH insofar as these parameters affect the electrostatic repulsive forces between the filaments. From these combined observations it is demonstrated that the unit-cell volume of the in vivo myofilament lattice behaves in a manner similar to that described for liquid-crystalline solutions.  相似文献   

5.
The maximal calcium-activated isometric tension produced by a skinned frog single muscle fiber falls off as the ionic strength of the solution bathing this fiber is elevated declining to zero near 0.5 M as the ionic strength is varied using KCl. When other neutral salts are used, the tension always declines at high ionic strength, but there is some difference between the various neutral salts used. The anions and cations can be ordered in terms of their ability to inhibit the maximal calcium-activated tension. The order of increasing inhibition of tension (decreasing tension) at high ionic strength for anions is propionate- SO4-- < Cl- < Br-. The order of increasing inhibition of calcium-activated tension for cations is K+ Na+ TMA+ < TEA+ < TPrA+ < TBuA+. The decline of maximal calcium-activated isometric tension with elevated salt concentration (ionic strength) can quantitatively explain the decline of isometric tetanic tension of a frog muscle fiber bathed in a hypertonic solution if one assumes that the internal ionic strength of a muscle fiber in normal Ringer's solution is 0.14–0.17 M. There is an increase in the base-line tension of a skinned muscle fiber bathed in a relaxing solution (no added calcium and 3 mM EGTA) of low ionic strength. This tension, which has no correlate in the intact fiber in hypotonic solutions, appears to be a noncalcium-activated tension and correlates more with a declining ionic strength than with small changes in [MgATP], [Mg], pH buffer, or [EGTA]. It is dependent upon the specific neutral salts used with cations being ordered in increasing inhibition of this noncalcium-activated tension (decreasing tension) as TPrA+ < TMA+ < K+ Na+. Measurements of potentials inside these skinned muscle fibers bathed in relaxing solutions produced occasional small positive values (<6 mV) which were not significantly different from zero.  相似文献   

6.
In contrast to skeletal muscle isoforms of myosin binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 fibronectin or Ig modules (modules are identified as C0 to C10, NH2 to COOH terminus), 3 phosphorylation sites between modules C1 and C2, and 28 additional amino acids rich in proline in C5. Phosphorylation between C1 and C2 increases maximum Ca-activated force (Fmax), alters thick filament structure, and increases the probability of myosin heads on the thick filament binding to actin on the thin filament. Unphosphorylated C1C2 fragment binds to myosin, but phosphorylation inhibits the binding. MyBP-C also binds to actin. Using two types of immunoprecipitation and cosedimentation, we show that fragments of MyBP-C containing C0 bind to actin. In low concentrations C0-containing fragments bind to skinned fibers when the NH2 terminus of endogenous MyBP-C is bound to myosin, but not when MyBP-C is bound to actin. C1C2 fragments bind to skinned fibers when endogenous MyBP-C is bound to actin but not to myosin. Disruption of interactions of endogenous C0 with a high concentration of added C0C2 fragments produces the same effect on contractility as extraction of MyBP-C, namely decrease in Fmax and increase in Ca sensitivity. These results suggest that cardiac contractility can be regulated by shifting the binding of the NH2 terminus of MyBP-C between actin and myosin. This mechanism may have an effect on diastolic filling of the heart.  相似文献   

7.
We systematically reviewed existing literature regarding lower extremity neuromuscular rate of force development (RFD), maximal muscle strength (Fmax), and physical function in neurodegenerative populations, and to what extent these outcomes are affected and/or associated. Following PRISMA guidelines, 4 databases (Pubmed, Embase, SPORTDiscus, Web of Science) were searched. Across aging, Parkinson Disease (PD), Alzheimer’s Disease (AD), Multiple Sclerosis (MS), or Stroke, included studies should report (Part 1) deficits in lower extremity RFD, Fmax, and physical function (~ individuals having inferior vs. superior physical function), and/or (Part 2) associations between RFD (or Fmax) and physical function. A total of N=32 studies (n=1087 participants) were included. Part 1: deficits in RFD (-31%, mean; N=22) were comparable to deficits in physical function (-26%; N=7), yet both deficits exceeded that of Fmax (-21%; N=20). Part 2: associations between RFD and physical function (r2=0.13, mean; N=16) were comparable to associations between Fmax and physical function (r2=0.15; N=12). Lower extremity RFD is (1) particularly sensitive (i.e. adapts earlier and/or more extensively) towards neurodegeneration, and more so than Fmax, and (2) of importance for physical function but apparently not superior to Fmax. RFD could serve as a useful indicator/biomarker of changes in neuromuscular function elicited by neurodegeneration.  相似文献   

8.
Longitudinal Impedance of Skinned Frog Muscle Fibers   总被引:1,自引:2,他引:1       下载免费PDF全文
Longitudinal impedance of skinned muscle fibers was measured with extracellular electrodes and an oil gap method in which a central longitudinal section of fiber is insulated by oil while the ends of the fiber are bathed in conducting pools of relaxing solution. Intact single fibers were isolated from frog semitendinosus muscle and the sarcolemma removed either by mechanical or chemical methods. Stray capacitance across the oil gap was measured after each experiment and its admittance subtracted from the admittance of the fiber and oil gap. Effects of impedance at the ends of the fiber were eliminated by measuring the impedance with two lengths of fiber in the oil gap and subtracting the impedance at the shorter length from that at the longer length. Longitudinal impedance so determined for mechanically and chemically skinned fibers exhibited zero phase shift from 1 to 10,000 Hz, i.e., the longitudinal impedance of skinned fibers is purely resistive. If we assume that our skinned fibers are a model of the sarcoplasm of muscle, we conclude that the equivalent circuit of the sarcoplasm is a resistor.  相似文献   

9.
We find that at 6 degrees C in the presence of 4 mM MgPPi, at low or moderate ionic strength, skinned rabbit psoas fibers exhibit a stiffness and an equatorial x-ray diffraction pattern similar to that of rigor fibers. As the ionic strength is increased in the absence of Ca2+, both the stiffness and the equatorial x-ray diffraction pattern approach those of the relaxed state. This suggests that, as in solution, increasing ionic strength weakens the affinity of myosin cross-bridges for actin, which results in a decrease in the number of cross-bridges attached. The effect is Ca2+-sensitive. Assuming that stiffness is a measure of the number of cross-bridge heads attached, in the absence of Ca2+, the fraction of attached cross-bridge heads varies from approximately 75% to approximately 25% over an ionic strength range where ionic strength in solution weakens the binding constant for myosin subfragment-1 binding to unregulated actin by less than a factor of 3. Therefore, this phenomenon appears similar to the cooperative Ca2+-sensitive binding of S1 to regulated actin in solution (Greene, L. E., and E. Eisenberg, 1980, Proc. Natl. Acad. Sci. USA, 77:2616). By comparing the binding constants in solution and in the fiber under similar conditions, we find that the "effective actin concentration," that is, the concentration that gives the same fraction of S1 molecules bound to actin in solution as cross-bridge heads are bound to actin in a fiber, is in the millimolar range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Previously we reported that saturation of cross-bridges with MgATP gamma S in skinned muscle fibers was calcium sensitive. In the present study we investigate whether this observation can be generalized to other nucleotides by studying saturation of cross-bridges with MgGTP. In solution, myosin-subfragment 1 (S1) in the presence of 10 mM MgGTP was found to bind to actin with low affinity, similar to that in the presence of MgATP and MgATP gamma S. In EGTA buffer, the equatorial x-ray diffraction intensity ratio I11/I10 recorded in single skinned fibers decreased upon increasing MgGTP concentration from 0 to 10 mM (1 degree C and 170 mM ionic strength). The I11/I10 ratio leveled off at 10 mM MgGTP, indicating full saturation of cross-bridges with the nucleotide. Under these conditions, the value of I11/I10 is indistinguishable from that obtained in the presence of saturating [MgATP]. In CaEGTA buffer, however, the decrease in I11/I10 occurs over a wider range of concentrations, and there is no indication of I11/I10 leveling off at 10 mM MgGTP, suggesting that full saturation is not reached. The Ca2+ dependence of GTP binding appears to be a direct consequence of the differences in the affinities of the strongly bound cross-bridges to actin versus weakly bound cross-bridges to actin. A biochemical scheme that could qualitatively explain the titration behavior of ATP gamma S and GTP is presented.  相似文献   

11.
Weakly attached cross-bridges in relaxed frog muscle fibers.   总被引:1,自引:1,他引:0       下载免费PDF全文
Tension responses due to small, rapid length changes (completed within 40 microseconds) were obtained from skinned single frog muscle fiber segments (4-10 mm length) incubated in relaxing and rigor solutions at various ionic strengths. The first 2 ms of these responses can be described with a linear model in which the fiber is regarded as a rod, composed of infinitesimally small, identical segments, containing one undamped elastic element and two or three damped elastic elements and a mass in series. Rigor stiffness changed less than 10% in a limited range, 40-160 mM, of ionic strength conditions. Equatorial x-ray diffraction patterns show a similar finding for the filament spacing and intensity ratio I(11)/I(10). Relaxed fibers became stiffer under low ionic strength conditions. This stiffness increment can be correlated with a decreasing filament spacing and (an increased number of) weakly attached cross-bridges. Under low ionic strength conditions an additional recovery (1 ms time constant) became noticeable which might reflect characteristics of weakly attached cross-bridges.  相似文献   

12.
Frog skeletal muscle fibers, mechanically skinned under water-saturated silicone oil, swell upon transfer to aqueous relaxing medium (60 mM KCl; 3 mM MgCl2; 3 mM ATP; 4 mM EGTA; 20 mM Tris maleate; pH = 7.0; ionic strength 0.15 M). Their cross-sectional areas, estimated with an elliptical approximation, increase 2.32-fold (±0.54 SD). Sarcomere spacing is unaffected by this swelling. Addition of 200 mM sucrose to relaxing medium had no effect on fiber dimensions, whereas decreasing pH to 5.0 caused fibers to shrink nearly to their original (oil) size. Decreasing MgCl2 to 0.3 mM caused fibers to swell 10%, and increasing MgCl2 to 9 mM led to an 8% shrinkage. Increasing ionic strength to 0.29 M with KCl caused a 26% increase in cross-sectional area; decreasing ionic strength to 0.09 M had no effect. Swelling pressure was estimated with long-chain polymers, which are probably excluded from the myofilament lattice. Shrinkage in dextran T10 (number average mol wt 6,200) was transient, indicating that this polymer may penetrate into the fibers. Shrinkage in dextran T40 (number average mol wt 28,000), polyvinylpyrrolidone (PVP) K30 (number average mol wt 40,000) and dextran T70 (number average mol wt 40,300) was not transient, indicating exclusion. Maximal calcium-activated tension is decreased by 21% in PVP solutions and by 31% in dextran T40 solutions. Fibers were shrunk to their original size with 8 × 10-2 g/cm3 PVP K30, a concentration which, from osmometric data, corresponds to an osmotic pressure (II/RT) of 10.5 mM. As discussed in the text, we consider this our best estimate of the swelling pressure. We find that increasing ionic strength to 0.39 M with KCl decreases swelling pressure slightly, whereas decreasing ionic strength to 0.09 M has no effect. We feel these data are consistent with the idea that swelling arises from the negatively charged nature of the myofilaments, from either mutual filamentary repulsion or a Donnan-osmotic mechanism.  相似文献   

13.
In the presence of ATP and absence of Ca2+, muscle crossbridges have either MgATP or MgADP.Pi bound at the active site (S. B. Marston and R. T. Tregear, Nature [Lond.], 235:22:1972). The behavior of these myosin adenosine triphosphate (M.ATP) crossbridges, both in relaxed skinned rabbit psoas and frog semitendinosus fibers, was analyzed. At very low ionic strength, T = 5 degrees C, mu = 20 mM, these crossbridges spend a large fraction of the time attached to actin. In rabbit, the attachment rate constants at low salt are 10(4) - 10(5) s-1, and the detachment rate constants are approximately 10(4) s-1. When ionic strength is increased up to physiological values by addition of 140 mM potassium propionate, the major effect is a weakening of the crossbridge binding constant approximately 30-40-fold. This effect occurs because of a large decrease, approximately 100-fold, in the crossbridge attachment rate constants. The detachment rate constants decrease only 2-3-fold. The effect of ionic strength on crossbridge binding in the fiber is very similar to the effect of ionic strength on the binding of myosin subfragment-1 to unregulated actin in solution. Thus, the effect of increasing ionic strength in fibers appears to be a direct effect on crossbridge binding rather than an effect on troponin-tropomyosin. The finding that crossbridges with ATP bound at the active site can and do attach to actin over a wide range of ionic strengths strongly suggests that troponin-tropomyosin keeps a muscle relaxed by blocking a step subsequent to crossbridge attachment. Thus, rather than troponin-tropomyosin serving to keep a muscle relaxed by inhibiting attachment, it seems quite possible that the main way in which troponin-tropomyosin regulates muscle activity is by preventing the weakly-binding relaxed crossbridges from going on through the crossbridge cycle into more strongly-binding states.  相似文献   

14.
In an effort to produce new pharmacological probes with mixed sigma/5-HT(1A) affinity, we have synthesized a series of 12 original 6-piperidino- or piperazino-alkyl-2(3H)-benzothiazolones and their receptor binding profile (sigma, 5-HT(1A), 5-HT(2A), 5-HT(3), D(2), H(1), and M(1)) was determined. The best mixed sigma/5-HT(1A) affinity profile was found within the piperidine series with 4-benzyl substitution associated to linker methylene chain n=2 (K(i) 5 and 4nM, respectively). Moreover, a highly selective sigma2 ligand was obtained with a 3,4-dichlorobenzyl substitution associated to n=4 (K(i) 2nM, selectivity ratio sigma1/sigma2=70).  相似文献   

15.
Until now, there has been no reliable method for histochemical determination of fiber types of single skinned muscle fibers. The major problem arises from the fact that most histochemical techniques use cross-sections of a large group of fibers and compare a given fiber with those surrounding it. This is not possible with a single skinned fiber which has been separated from a bundle to be used for mechanical analysis. A further problem is that the skinning procedure itself may alter the staining pattern. We have developed a procedure by which multiple cross-sections of single skinned fibers can be exposed to various histochemical reactions and the staining patterns compared on the same slide to those of frozen muscle and skinned bundles. By this procedure, three fiber types were distinguished by both Ca2+-ATPase and SDH reactions. The fiber typings determined from both enzyme systems correlated well with each other. Although we were able to differentiate only between slow and fast fibers by SDS-PAGE, these results corroborated the histochemical classification. This procedure will clearly be useful in skinned single muscle fiber mechanics experiments performed to determine functional differences among fiber types.  相似文献   

16.
Increasing the intramuscular stores of total creatine [TCr = creatine (Cr) + creatine phosphate (CrP)] can result in improved muscle performance during certain types of exercise in humans. Initial uptake of Cr is accompanied by an increase in cellular water to maintain osmotic balance, resulting in a decrease in myoplasmic ionic strength. Mechanically skinned single fibers from rat soleus (SOL) and extensor digitorum longus (EDL) muscles were used to examine the direct effects on the contractile apparatus of increasing [Cr], increasing [Cr] plus decreasing ionic strength, and increasing [Cr] and [CrP] with no change in ionic strength. Increasing [Cr] from 19 to 32 mM, accompanied by appropriate increases in water to maintain osmolality, had appreciable beneficial effects on contractile apparatus performance. Compared with control conditions, both SOL and EDL fibers showed increases in Ca2+ sensitivity (+0.061 ± 0.004 and +0.049 ± 0.009 pCa units, respectively) and maximum Ca2+-activated force (to 104 ± 1 and 105 ± 1%, respectively). In contrast, increasing [Cr] alone had a small inhibitory effect. When both [Cr] and [CrP] were increased, there was virtually no change in Ca2+ sensitivity of the contractile apparatus, and maximum Ca2+-activated force was 106 ± 1% compared with control conditions in both SOL and EDL fibers. These results suggest that the initial improvement in performance observed with Cr supplementation is likely due in large part to direct effects of the accompanying decrease in myoplasmic ionic strength on the properties of the contractile apparatus. ergogenic aid; muscle contraction; fatigue  相似文献   

17.
A model, developed within the framework of the counterion condensation theory of linear polyelectrolytes, is presented in this paper to describe the acid-base properties of linear polyelectrolytes, consisting of several types of functional ionizable groups. This formalism has been successfully applied to Fluka humic acid under salt-free conditions, as well as in the presence of supporting simple 1:1 salt (KNO3) at three different concentrations. As part of this approach, the charge density of the humic acid is obtained from the activity coefficient measurements of potassium counterions at different humic acid concentrations at a constant degree of dissociation of the polyelectrolyte. The humic acid average charge density was found to be 0.80 +/- 0.05. Using the present model, we are able to satisfactorily describe the experimental data obtained from acid-base potentiometric titrations. Four main functional groups making up the polymer are determined through their fractional abundances (Xi) and intrinsic pK (pK0i) values. The fractional abundances remained constant and independent of the ionic strength, indicating that the humic acid constitution does not depend on the concentration of excess salts. The pK0i values show a small change with ionic strength, which can be explained by the polyelectrolytic behavior of the solution.  相似文献   

18.
Equatorial x-ray diffraction patterns from single skinned rabbit psoas fibers were studied at various ionic strengths to obtain structural information regarding cross-bridge formation in relaxed muscle fibers. At ionic strengths between 20 and 50 mM, the intensity of the 11 reflection, I11, of the relaxed state was close to that of the rigor state, whereas the intensity of the 10 reflection, I10, was approximately twice that of rigor reflection. Calculations by two-dimensional Fourier synthesis indicated that substantial extra mass was associated with the thin filaments under these conditions. With increasing ionic strength between 20 and 100 mM, I10 increased and I11 decreased in an approximately linear way, indicating net transfer of mass away from the thin filaments towards the thick filaments. These results provided evidence that cross-bridges were formed in a relaxed fiber at low ionic strengths, and that the number of cross-bridges decreased as ionic strength was raised. Above mu = 100 mM, I10 and I11 both decreased, indicating the onset of increasing disorder within the filament lattice.  相似文献   

19.
The stiffness of single skinned rabbit psoas fibers was measured during rapid length changes applied to one end of the fibers. Apparent fiber stiffness was taken as the initial slope when force was plotted vs. change in sarcomere length. In the presence of MgATP, apparent fiber stiffness increased with increasing speed of stretch. With the fastest possible stretches, the stiffness of relaxed fibers at an ionic strength of 20 mM reached more than 50% of the stiffness measured in rigor. However, it was not clear whether apparent fiber stiffness had reached a maximum, speed independent value. The same behavior was seen at several ionic strengths, with increasing ionic strength leading to a decrease in the apparent fiber stiffness measured at any speed of stretch. A speed dependence of apparent fiber stiffness was demonstrated even more clearly when stiffness was measured in the presence of 4 mM MgPPi. In this case, stiffness varied with speed of stretch over about four decades. This speed dependence of apparent fiber stiffness is likely due to cross-bridges detaching and reattaching during the stiffness measurement (Schoenberg, 1985. Biophys. J. 48:467). This means that obtaining an estimate of the maximum number of cross-bridges attached to actin in relaxed fibers at various ionic strengths is not straightforward.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Human hearts with reduced or mutant myosin binding protein C (MyBP-C) undergo hypertrophy and dilation, suggesting that reduction or alteration of MyBP-C interferes with normal contraction. Extraction of 60-70% of MyBP-C over 1 h from a mechanically disrupted cardiac myocyte has been shown to increase Ca sensitivity but does not appear to impair development of maximum Ca-activated force (Fmax). To determine whether loss of MyBP-C over a longer period of time will decrease force development in a reversible manner, MyBP-C has been extracted from chemically skinned rat cardiac trabeculae for 1-4 h, and force production, Ca sensitivity, and thick filament structure were measured. Although extraction of MyBP-C for 1 h did not alter Fmax, after 4 h, myosin heads became disordered and Fmax decreased. At this point, incubation of the trabeculae with rat cardiac MyBP-C in a relaxing solution reversed the decline in Fmax and most of the change in order of myosin heads. Extraction of MyBP-C appears to produce a change in the orientation of myosin heads that is associated with a decreased ability of the contractile system to develop force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号