首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the metabolite disposal mechanisms in the regulation of the tricarboxylic acid cycle pool size was studied in isolated perfused rat hearts oxidizing 2 mM propionate. Malate and succinate accumulated during the propionate metabolism. A further 118% increase in the malate concentration and 600% increase in the succinate concentration and a slight inhibition of the propionate uptake were observed during a subsequent KCl-induced arrest of the heart metabolizing propionate. When the mechanical activity of the heart was restored, the malate and succinate concentrations returned to the same levels as before the arrest of the heart, but the propionate uptake did not rise significantly. The mean disposal rates of the tricarboxylic acid cycle metabolites during the cardiac arrest and subsequent restoration of the activity were 1.4 and 2.4 μmol/min per g dry weight, respectively. During cardiac arrest the malate carbon disposed was almost totally recovered as C3 compounds, whereas after the increase in the ATP-consumption most of it was oxidized. The results show that propionate is oxidized by heart muscle at an appreciable rate but the disposal rate of the tricarboxylic acid cycle intermediates is not tightly regulated by the cellular energy state. Although the metabolite pool size of the tricarboxylic acid cycle responds to change in the ATP consumption, the energy state appears to have a greater effect on the fate of the C3 compounds formed than on the actual rate of C4 compound disposition.  相似文献   

2.
Propionate is used to protect bread and animal feed from moulds. The mode of action of this short-chain fatty acid was studied using Aspergillus nidulans as a model organism. The filamentous fungus is able to grow slowly on propionate, which is oxidized to acetyl-CoA via propionyl-CoA, methylcitrate and pyruvate. Propionate inhibits growth of A. nidulans on glucose but not on acetate; the latter was shown to inhibit propionate oxidation. When grown on glucose a methylcitrate synthase deletion mutant is much more sensitive towards the presence of propionate in the medium as compared to the wild-type and accumulates 10-fold higher levels of propionyl-CoA, which inhibits CoA-dependent enzymes such as pyruvate dehydrogenase, succinyl-CoA synthetase and ATP citrate lyase. The most important inhibition is that of pyruvate dehydrogenase, as this affects glucose and propionate metabolism directly. In contrast, the blocked succinyl-CoA synthetase can be circumvented by a succinyl-CoA:acetate/propionate CoA-transferase, whereas ATP citrate lyase is required only for biosynthetic purposes. In addition, data are presented that correlate inhibition of fungal polyketide synthesis by propionyl-CoA with the accumulation of this CoA-derivative. A possible toxicity of propionyl-CoA for humans in diseases such as propionic acidaemia and methylmalonic aciduria is also discussed.  相似文献   

3.
Metabolic effects of pent-4-enoate in isolated perfused rat heart.   总被引:2,自引:2,他引:0       下载免费PDF全文
The metabolic effects of the hypoglycaemic agent pent-4-enoate were studied in isolated, beating or potassium-arrested rat hearts. The addition of 0.8mM-pent-4-enoate to the perfusion fluid increased O2 consumption by 76% in the arrested heart and by 14% in the beating heart; the concentration ratio of phosphocreatine/creatine increase concomitantly by 47% and 27% respectively. Perfusion of the heart with pent-4-enoate resulted in a 30-fold increase in the concentration of the pool of tricarboxylic acid-cycle intermediates in the tissue, about 90% of this increase being due to malate. The sum of the concentrations of the myocardial free amino acids remained virtually unchanged during the accumulation of the tricarboxylic acid-cycle intermediates. It was concluded that pent-4-enoate can be effectively metabolized in the myocardium and that its metabolism probably proceeds via propionyl-CoA, since pent-4-enoate reproduces many of the metabolic characteristics of propionate in the cardiac muscle. The accumulation of the tricarboxylic acid-cycle intermediates is probably due to carboxylation of propionyl-CoA. The response pattern of the metabolite concentrations in the cardiac muscle is quite different from that in the liver, in which decrease of the concentrations of the tricarboxylic acid-cycle intermediates has been observed previously [Williamson, Rostand & Peterson (1970) J. Biol. Chem. 245, 3242-3251].  相似文献   

4.
Mechanisms of growth inhibition by propionate on the growth of Rhodopseudomonas sphaeroides were studied. Partially purified pyruvate dehydrogenase complex (PDC) from R. sphaeroides was inhibited by propionyl-CoA, one of the metabolic intermediates of propionate, while propionate itself did not inhibit the enzyme. This suggests that the inhibitor of the growth in vivo is not propionate but propionyl-CoA. The inhibition by propionyl-CoA was competitive with respect to coenzyme A concentration. The K1 value for propionyl-CoA was 0.84 mM. Addition of NaHCO3, which restored the growth of this bacterium in the presence of propionate, increased the rate of propionate incorporation by 1.7-fold and decreased the intracellular level of propionyl-CoA by half. These findings suggest that HCO3-ion lowers the level of propionyl-CoA by accelerating its carboxylation reaction, which is catalyzed by propionyl-CoA carboxylase. Effects of NaHCO3 and acetate on the growth restoration were also studied by the use of propionyl-CoA carboxylase-deficient mutants. NaHCO3 did not restore the growth of the mutants, indicating an essential role of propionyl-CoA carboxylase on the restoration of growth by NaHCO3 as suggested above. Addition of acetate restores the growth of the mutants in the presence of propionate. Acetate probably restores the growth by supplying acetyl-CoA.  相似文献   

5.
It has been shown in the experiments on rat liver mitochondria under glucose hexo-kinase load that excess of substrates of (1-20 mM) pyruvate, acetate, propionate, pent-4-enoate and malate may induce oxidation of NAD(P)H and inhibition of mitochondrial respiration (by 20-50% and more) due to a decreased rate of hydrogen production by tricarboxylic acid cycle. It has been concluded from the analysis of mathematical models and metabolite-testings which remove this inhibition that for pyruvate and acetate this inhibition is an autocatalytic one. It is related to a decreased level of CoA and oxaloacetate due to the formation of "traps" such as acetyl-CoA and alpha-kotoglutarate. For propionate and pent-4-enoate in the bicarbonate-free medium suppression of the flux in the cycle is concerned with a decreased level of CoA, acetyl-CoA and succionoyl CoA due to the accumulation of propionyl-CoA. It seems to be also concerned with the inhibition of citrate-synthetase and alpha-ketoglutarate-dehydrogenase by propionyl-CoA. Malate (in the presence of malonate) can inhibit respiration at the expense of direct inhibition of citrate-synthetase.  相似文献   

6.
Propionate and pyruvate added to isolated normal and biotin-deficient adult rat hepatocytes increase the production of glucose. This production decreases about 30% on biotin deficiency. Malonate inhibits gluconeogenesis from propionate showing the metabolic transformation of propionyl-CoA via the Krebs cycle. Neither glucagon nor dibutyryl-cyclic AMP significantly stimulate gluconeogenesis.  相似文献   

7.
In adult F. hepatica pyruvate is decarboxylated via pyruvate dehydrogenase to acetyl-CoA; acetyl-CoA is then cleaved to acetate via three possible mechanisms (1) carnitine dependent hydrolysis, (2) CoA transferase, (3) reversal of a GTP dependent acyl-CoA synthetase. Of these three systems, CoA transferase has by far the greatest activity. Propionate production by F. hepatica is similar to the mammalian system, succinate being metabolized via succinic thiokinase, methylmalonyl-CoA isomerase, methyl-malonyl-CoA racemase and propionyl-CoA carboxylase to propionyl-CoA. Propionyl-CoA is then cleaved to propionate by the same three pathways as acetyl-CoA. No ATP or GTP production could be demonstrated when acetyl- or propionyl-CoA were incubated with homogenates of F. hepatica. This indicates that carnitine dependent hydrolysis or CoA transferase are the major pathways of acetyl- or propionyl-CoA breakdown. The CoA transferase reaction would result in the conservation of the bond energy although there is no net ATP synthesis.  相似文献   

8.
Mitochondrial dysfunction during acute metabolic crises is considered an important pathomechanism in inherited disorders of propionate metabolism, i.e. propionic and methylmalonic acidurias. Biochemically, these disorders are characterized by accumulation of propionyl-CoA and metabolites of alternative propionate oxidation. In the present study, we demonstrate uncompetitive inhibition of PDHc (pyruvate dehydrogenase complex) by propionyl-CoA in purified porcine enzyme and in submitochondrial particles from bovine heart being in the same range as the inhibition induced by acetyl-CoA, the physiological product and known inhibitor of PDHc. Evaluation of similar monocarboxylic CoA esters showed a chain-length specificity for PDHc inhibition. In contrast with CoA esters, non-esterified fatty acids did not inhibit PDHc activity. In addition to PDHc inhibition, analysis of respiratory chain and tricarboxylic acid cycle enzymes also revealed an inhibition by propionyl-CoA on respiratory chain complex III and alpha-ketoglutarate dehydrogenase complex. To test whether impairment of mitochondrial energy metabolism is involved in the pathogenesis of propionic aciduria, we performed a thorough bioenergetic analysis in muscle biopsy specimens of two patients. In line with the in vitro results, oxidative phosphorylation was severely compromised in both patients. Furthermore, expression of respiratory chain complexes I-IV and the amount of mitochondrial DNA were strongly decreased, and ultrastructural mitochondrial abnormalities were found, highlighting severe mitochondrial dysfunction. In conclusion, our results favour the hypothesis that toxic metabolites, in particular propionyl-CoA, are involved in the pathogenesis of inherited disorders of propionate metabolism, sharing mechanistic similarities with propionate toxicity in micro-organisms.  相似文献   

9.
Metabolism of propionate to acetate in the cockroach Periplaneta americana   总被引:2,自引:0,他引:2  
Carbon-13 NMR and radiotracer studies were used to determine the precursor to methylmalonate and to study the metabolism of propionate in the cockroach Periplaneta americana. [3,4,5-13C3]Valine labeled carbons 3, 4, and 26 of 3-methylpentacosane, indicating that valine was metabolized via propionyl-CoA to methylmalonyl-CoA and served as the methyl branch unit precursor. Potassium [2-13C]propionate labeled the odd-numbered carbons of hydrocarbons and potassium [3-13C]propionate labeled the even-numbered carbons of hydrocarbons in this insect. This labeling pattern indicates that propionate is metabolized to acetate, with carbon-2 of propionate becoming the methyl carbon of acetate and carbon-3 of propionate becoming the carboxyl carbon of acetate. In vivo studies in which products were separated by HPLC showed that [2-14C]propionate was readily metabolized to acetate. The radioactivity from sodium [1-14C]propionate was not incorporated into succinate nor into any other tricarboxylic acid cycle intermediate, indicating that propionate was not metabolized via methylmalonate to succinate. Similarly, [1-14C]propionate did not label acetate. An experiment designed to determine the subcellular localization of the enzymes involved in converting propionate to acetate showed that they were located in the mitochondrial fraction. Data from both in vivo and in vitro studies as a function of time indicated that propionate was converted directly to acetate and did not first go through tricarboxylic acid cycle intermediates. These data demonstrate a novel pathway of propionate metabolism in insects.  相似文献   

10.
In this study, the growth characteristics of Fusariumoxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F.oxysporum cells could tolerate was 0.8%w/v while glucose was consumed preferentially to acetate. The activity of isocitrate lyase was high when cells were grown on acetate and acetate plus glucose indicating an activation of the glyoxylate cycle. Investigation of the metabolic fingerprinting and footprinting revealed higher levels of intracellular and extracellular TCA cycle intermediates when F.oxysporum cells were grown on mixtures of acetate and glucose compared to growth on only glucose. Our data support the hypothesis that a higher flux through TCA cycle during acetate consumption could significantly increase the pool of NADH, resulting in the activation of succinate-propionate pathway which consumes reducing power (NADH) via conversion of succinate to propionyl-CoA and produce propionate.  相似文献   

11.
The possible role of some metabolic systems producing acetyl-CoA, and methylmalonyl-CoA as initial precursors in the biosynthesis of the macrolide antibiotic A 6599 by Streptomyces hygroscopicus JA 6599 was studied. The activities of pyruvate decarboxylase exceeded in two higher producing strains about twofold those found in the mycelium of a lower producing one suggesting that in this organism an enhanced production of acetyl-CoA should be one of the prerequisites necessary for an improved antibiotic biosynthesis. No clear interrelationship was established, however, between the biosynthesis of the secondary metabolite A 6599 on the one hand and the acetate and propionate kinase content on the other hand. In S. hygroscopicus JA 6599 the carboxylation of acetyl-CoA or propionyl-CoA seems to be the major pathway giving malonyl-CoA or methylmalonyl-CoA, respectively. Thus, the activities of acetyl-CoA and propionyl-CoA carboxylases corresponded with both the levels of antibiotic production in several strains and with variations observed in the specific antibiotic production rate during the cultivation. Some other pathways synthesizing these precursors, e.g. via oxaloacetate, are assumed to be negligible since even in the mycelium of the lower producing strain increased activities of phosphoenolpyruvate carboxylase were present.  相似文献   

12.
In vivo 13C and 31P nuclear magnetic resonance techniques were used to study propionate metabolism by activated sludge in enhanced biological phosphorus removal systems. The fate of label supplied in [3-13C]propionate was monitored in living cells subjected to anaerobic/aerobic cycles. During the anaerobic phase, propionate was converted to polyhydroxyalkanoates (PHA) with the following monomer composition: hydroxyvalerate, 74.2%; hydroxymethylvalerate, 16.9%; hydroxymethylbutyrate, 8.6%; and hydroxybutyrate, 0.3%. The isotopic enrichment in the different carbon atoms of hydroxyvalerate (HV) produced during the first anaerobic stage was determined: HV5, 59%; HV4, 5.0%; HV3, 1.1%; HV2, 3.5%; and HV1, 2.8%. A large proportion of the supplied label ended up on carbon C-5 of HV, directly derived from the pool of propionyl-coenzyme A (CoA), which is primarily labeled on C-3; useful information on the nature of operating metabolic pathways was provided by the extent of labeling on C-1, C-2, and C-4. The labeling pattern on C-1 and C-2 was explained by the conversion of propionyl-CoA to acetyl-CoA via succinyl-CoA and the left branch of the tricarboxylic acid cycle, which involves scrambling of label between the inner carbons of succinate. This constitutes solid evidence for the operation of succinate dehydrogenase under anaerobic conditions. The labeling in HV4 is explained by backflux from succinate to propionyl-CoA. The involvement of glycogen in the metabolism of propionate was also demonstrated; moreover, it was shown that the acetyl moiety to the synthesis of PHA was derived preferentially from glycogen. According to the proposed metabolic scheme, the decarboxylation of pyruvate is coupled to the production of hydrogen, and the missing reducing equivalents should be derived from a source other than glycogen metabolism.  相似文献   

13.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

14.
To understand how enzymatic pathways respond to changing external conditions, the fluxes through the tricarboxylic acid cycle and ancillary reactions were determined under three different growth conditions in Escherichia coli. The velocities through the major steps in each pathway were measured (a) for growth on acetate alone, (b) for growth on acetate plus glucose, and (c) during the transition caused by addition of glucose to cells growing on acetate. During the transition, the carbon flow through the Krebs cycle decreased by a factor of 5 despite an increase in the growth rate of the culture. Under these conditions, the dephosphorylation of isocitrate dehydrogenase caused a 4-fold increase in its activity. This, together with the decreased rate of substrate production and the kinetic parameters of the branch point enzymes, led to a cessation of the flux through the glyoxylate shunt. The decreased rate of acetyl-CoA turnover, not an inhibition of acetate transport, caused a slower rate of acetate uptake in the presence of glucose. The modulation of protein phosphorylation and metabolite levels is one of the regulatory mechanisms which enables the bacterium to make dramatic shifts between metabolic pathways within a fraction of a doubling time.  相似文献   

15.
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass . h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis.  相似文献   

16.
On-site monitoring of volatile fatty acids (VFAs), such as propionate, is industrially and medically important. The present study developed a VFA biosensing system comprised of two recombinant enzymes, propionate coenzyme A (CoA) transferase (PCT) from Clostridium propionicum and acyl-CoA oxidase from Arabidopsis thaliana. This system produced hydrogen peroxide in the presence of acetyl-CoA, oxygen, and VFA substrates, which could be quantified by colorimetric methods using peroxidase and dye reagents (e.g., p-aminobenzoic acid plus 4-aminoantipyrine or Amplex Red). The use of PCT and acetyl-CoA, rather than acyl-CoA synthetases (ACS) and CoA-SH, obviated a background reaction of dye reagents with CoA-SH and enabled very sensitive detection of VFAs (down to 1 microM propionate, more than 100-fold more sensitive compared to previously developed ACS biosensors). We demonstrated its utility by measuring propionate concentrations in serum and fermentation samples. Results suggest that our biosensing system is applicable to the detection of propionate in medical and fermentation samples.  相似文献   

17.
Zhang YQ  Brock M  Keller NP 《Genetics》2004,168(2):785-794
Propionyl-CoA is an intermediate metabolite produced through a variety of pathways including thioesterification of propionate and catabolism of odd chain fatty acids and select amino acids. Previously, we found that disruption of the methylcitrate synthase gene, mcsA, which blocks propionyl-CoA utilization, as well as growth on propionate impaired production of several polyketides-molecules typically derived from acetyl-CoA and malonyl-CoA-including sterigmatocystin (ST), a potent carcinogen, and the conidiospore pigment. Here we describe three lines of evidence that demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis. First, inactivation of a putative propionyl-CoA synthase, PcsA, which converts propionate to propionyl-CoA, restored polyketide production and reduced cellular propionyl-CoA content in a DeltamcsA background. Second, inactivation of the acetyl-CoA synthase, FacA, which is also involved in propionate utilization, restored polyketide production in the DeltamcsA background. Third, fungal growth on several compounds (e.g., heptadecanoic acid, isoleucine, and methionine) whose catabolism includes the formation of propionyl-CoA, were found to inhibit ST and conidiospore pigment production. These results demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis.  相似文献   

18.
Filamentous fungi metabolize toxic propionyl-CoA via the methylcitrate cycle. Disruption of the methylcitrate synthase gene leads to an accumulation of propionyl-CoA and attenuates virulence of Aspergillus fumigatus . However, addition of acetate, but not ethanol, to propionate-containing medium strongly reduces the accumulation of propionyl-CoA and restores growth of the methylcitrate synthase mutant. Therefore, the existence of a CoA-transferase was postulated, which transfers the CoASH moiety from propionyl-CoA to acetate and, thereby, detoxifying the cell. In this study, we purified the responsible protein from Aspergillus nidulans and characterized its biochemical properties. The enzyme used succinyl-, propionyl- and acetyl-CoA as CoASH donors and the corresponding acids as acceptor molecules. Although the protein displayed high sequence similarity to acetyl-CoA hydrolases this activity was hardly detectable. We additionally identified and deleted the coding DNA sequence of the CoA-transferase. The mutant displayed weak phenotypes in the presence of propionate and behaved like the wild type when no propionate was present. However, when a double-deletion mutant defective in both methylcitrate synthase and CoA-transferase was constructed, the resulting strain was unable to grow on media containing acetate and propionate as sole carbon sources, which confirmed the in vivo activity of the CoA-transferase.  相似文献   

19.
In propionic acidemia, propionate acts as a metabolic toxin in liver cells by accumulating in mitochondria as propionyl-CoA and its derivative, methylcitrate, two tricarboxylic acid cycle inhibitors. Little is known about the cerebral metabolism of propionate, although clinical effects of propionic acidemia are largely neurological. We found that propionate was metabolized oxidatively by glia: [3-(14)C]propionate injected into mouse striatum or cortex, gave a specific activity of glutamine that was 5-6 times that of glutamate, indicating metabolism in cells that express glutamine synthetase, i.e., glia. Further, cultured cerebellar astrocytes metabolized [3-(14)C]propionate; cultured neurons did not. However, both cultured cerebellar neurons and astrocytes took up [3H]propionate, and propionate exposure increased histone acetylation in cultured neurons and astrocytes as well as in hippocampal CA3 pyramidal neurons of wake mice. The inability of neurons to metabolize propionate may be due to lack of mitochondrial propionyl-CoA synthetase activity or transport of propionyl residues into mitochondria, as cultured neurons expressed propionyl-CoA carboxylase, a mitochondrial matrix enzyme, and oxidized isoleucine, which becomes converted into propionyl-CoA intramitochondrially. The glial metabolism of propionate suggests astrocytic vulnerability in propionic acidemia when intramitochondrial propionyl-CoA may accumulate. Propionic acidemia may alter both neuronal and glial gene expression by affecting histone acetylation.  相似文献   

20.
Aspergillus nidulans was used as a model organism to investigate the fungal propionate metabolism and the mechanism of growth inhibition by propionate. The fungus is able to grow slowly on propionate as sole carbon and energy source. Propionate is oxidized to pyruvate via the methylcitrate cycle. The key enzyme methylcitrate synthase was purified and the corresponding gene mcsA, which contains two introns, was cloned, sequenced and overexpressed in A. nidulans. The derived amino acid sequence of the enzyme shows more than 50% identity to those of most eukaryotic citrate synthases, but only 14% identity to the sequence of the recently detected bacterial methylcitrate synthase from Escherichia coli. A mcsA deletion strain was unable to grow on propionate. The inhibitory growth effect of propionate on glucose medium was enhanced in this strain, which led to the assumption that trapping of the available CoA as propionyl-CoA and/or the accumulating propionyl-CoA itself interferes with other biosynthetic pathways such as fatty acid and polyketide syntheses. In the wild-type strain, however, the predominant inhibitor may be methylcitrate. Propionate (100 mM) not only impaired hyphal growth of A. nidulans but also synthesis of the green polyketide-derived pigment of the conidia, whereas in the mutant pigmentation was abolished with 20 mM propionate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号