首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperinsulinemia is common in obesity, but whether it plays a role in intramyocellular triglyceride (imcTG) buildup is unknown. In this study, hyperinsulinemic-euglycemic clamp experiments were performed in overnight-fasted lean and high-fat-fed obese rats, awake, to determine the effect of insulin on imcTG synthesis (incorporation of [(14)C]glycerol, [(14)C]glucose, and [(3)H]oleate). Insulin infusion at 25 (low insulin) and 100 (high insulin) pmol/kg/min increased plasma insulin by 5- and 16-fold, respectively, whereas plasma and intramyocellular glycerol, FFAs, triglycerides, and glucose levels were maintained at their basal levels by co-infusion of exogenous glycerol, FFAs, and triglycerides at fixed rates and glucose at varying rates. In obese rats, insulin suppressed incorporation of glycerol into the imcTG-glycerol moiety dose dependently (P < 0.01-P < 0.001) in gastrocnemius and tibialis anterior, but only the high insulin suppressed it in soleus (P < 0.05). The low insulin suppressed glucose incorporation into imcTG-glycerol in all three muscles (P = 0.01-P < 0.01). However, the low insulin did not affect (P > 0.05) and the high insulin suppressed (P < 0.05-P < 0.01) fatty acid incorporation into imcTG in all three muscles. Insulin also suppressed glycerol incorporation in lean rats (P < 0.01-P < 0.04). On the other hand, imcTG pool size was not affected by insulin (P > 0.05). These observations suggest that acute hyperinsulinemia inhibits imcTG synthesis and thus does not appear to promote imcTG accumulation via the synthetic pathway, at least in the short term.  相似文献   

2.
Objective: To understand the role of hyperinsulinemia in intramyocellular (imc) triglyceride (TG) accumulation and in regulating imcTG turnover. Research Methods and Procedures: imcTG was first prelabeled by continuous infusion of [U‐14C]glycerol (pulse), and then the rate of label loss from the prelabeled imcTG pool (turnover) in gastrocnemius, tibialis anterior, and soleus muscle of awake, high‐fat‐fed obese rats during the subsequent hyperinsulinemic‐euglycemic clamp experiments (chase) was determined. Results: Post‐absorptive basal fractional imcTG turnover rate in soleus was 0.010 ± 0.001/min, significantly lower than that in gastrocnemius (0.026 ± 0.002/min, p < 0.001) or tibialis anterior (0.030 ± 0.002/min, p < 0.0001), a pattern reciprocal to their imcTG pool size. Insulin infusion at 25 pmol/kg per minute resulted in pathophysiological hyperinsulinemia (5‐fold increase over the baseline value). This caused an increase in imcTG turnover by 3‐fold in soleus (0.029 ± 0.006/min, p = 0.002) but a decrease in gastrocnemius (0.012 ± 0.003/min, p = 0.001) and in tibialis anterior (0.0064 ± 0.001/min, p < 0.0001). Pathophysiological hyperinsulinemia suppressed hormone‐sensitive lipase activity in heart (p = 0.01) and mesenteric fat (p = 0.05) but not in skeletal muscle (p > 0.05). The pool size of imcTG was not affected by hyperinsulinemia. Discussion: The results demonstrated muscle‐type dependence in the response of imcTG turnover to hyperinsulinemia in the obesity model. The reciprocal insulin effects on imcTG turnover in oxidative vs. oxidative‐glycolytic muscle indicated a possibility that oxidative muscle contributes more to insulin resistance under hyperinsulinemia if imcTG‐fatty acid oxidation is a function of turnover. imcTG turnover does not seem to regulate imcTG pool size acutely.  相似文献   

3.
1. When rat isolated fat-cells were incubated with fructose and palmitate, insulin significantly stimulated glyceride synthesis as measured by either [14C]fructose incorporation into the glycerol moiety or of [3H]palmitate incorporation into the acyl moiety of tissue glycerides. Under certain conditions the effect of insulin on glyceride synthesis was greater than the effect of insulin on fructose uptake. 2. In the presence of palmitate, insulin slightly stimulated (a) [14C]pyruvate incorporation into glyceride glycerol of fat-cells and (b) 3H2O incorporation into glyceride glycerol of incubated fat-pads. 3. At low extracellular total concentrations of fatty acids (in the presence of albumin), insulin stimulated [14C]fructose, [14C]pyruvate and 3H2O incorporation into fat-cell fatty acids. Increasing the extracellular fatty acid concentration greatly inhibited fatty acid synthesis from these precursors and also greatly decreased the extent of apparent stimulation of fatty acid synthesis by insulin. 4. These results are discussed in relation to the suggestion [A.P. Halestrap & R.M.Denton (1974) Biochem. J. 142, 365-377] that the tissue may contain a specific acyl-binding protein which is subject to regulation. It is suggested that an insulin-sensitive enzyme component of the glyceride-synthesis process may play such a role.  相似文献   

4.
One of the strategies to prevent insulin resistance is to reduce circulating free fatty acids (FFA). The aim of this study is to assess the effect of an oral lactulose load on fatty acid metabolism in overweight subjects. Eight overweight subjects received a primed constant intravenous infusion of [1-(13)C]acetate and of [1,1,2,3,3-(2)H(5)]glycerol for 9 h. After 3 h of tracer infusion, patients ingested 30 g lactulose, or saline solution. Arterialized blood samples were collected every 20 min. Basal plasma concentrations of acetate were similar before and between oral treatments as well as glycerol and FFA concentrations. Plasma acetate turnover was 11.4 +/- 2.4 vs. 10.7 +/- 1.4 micromol.kg(-1).min(-1) [not significant (NS)], and plasma glycerol turnover was 3.8 +/- 0.4 vs. 4.8 +/- 1.9 micromol.kg(-1).min(-1) (NS). After lactulose ingestion, acetate concentration increased twofold and then decreased to baseline. Acetate turnover rate increased to 15.5 +/- 2.2 micromol.kg(-1).min(-1) after lactulose treatment, whereas it was unchanged after saline treatment (10.3 +/- 2.2 micromol.kg(-1).min(-1), P < or = 0.0001). In contrast, FFA concentrations decreased significantly after lactulose ingestion and then increased slowly. Glycerol turnover decreased after lactulose ingestion compared with saline, 2.8 +/- 0.4 vs. 3.5 +/- 0.3 micromol.kg(-1).min(-1) (P < or = 0.05). A significant negative correlation was found between glycerol and acetate turnover after lactulose treatments (r = -0.78, P < or = 0.02). These results showed in overweight subjects a short-term decrease in FFA level and glycerol turnover after lactulose ingestion related to a decrease of lipolysis in close relationship with an increase of acetate production.  相似文献   

5.
1. The hepatic utilization of gluconeogenic substrates was investigated shortly after portal infusion of either insulin or glucose in fasted rats. 2. After 20 min of insulin infusion blood glucose concentration decreased. However, neither glucose generation from precursors such as alanine or pyruvate nor their incorporation into fatty acids was modified. Under these conditions, insulin rapidly increased the incorporation of gluconeogenic substrates into the hepatic glyceride glycerol fraction. Insulin treatment led to a decrease in substrate incorporation into liver glycogen. 3. After 20 min of portal glucose infusion both plasma insulin and glucose concentrations increased and the incorporation of pyruvate into hepatic glyceride glycerol and into glycogen was also stimulated. 4. A close relationship was observed between blood glucose concentrations and the level of incorporation of gluconeogenic substrates into liver glycogen. 5. In conclusion, during fasting insulin stimulates the incorporation of gluconeogenic substrates into the glycerol moiety of hepatic glycerides, which may be the preferential mechanism through which fatty acid esterification is accomplished during refeeding. This effect of insulin is rapid and detected even before other classical modifications induced by the hormone such as gluconeogenesis inhibition or lipogenesis activation. Furthermore, the effect is not related to insulin-induced hypoglycemia since glucose infusion mimics insulin action on glyceride glycerol synthesis.  相似文献   

6.
Glucose and fatty acid metabolism of resting skeletal muscle were studied by perfusion of the isolated rat hind leg with a hemoglobin-free medium. Tissue integrity was demonstrated by normal ATP, ADP and creatine phosphate levels, by a sufficient oxygen supply, and by a normal appearance of perfused muscle specimens under the electron microscope. The rates of glucose and fatty acid uptake, and of lactate, alanine, glycerol and fatty acid release were constant over a perfusion period of 60 min. Insulin (1 unit/l) caused a more than threefold increase in glucose uptake, a stimulation of lactate production, and a 20% increase in the muscular glycogen levels. Fatty acids and alanine release were significantly diminished by insulin, but glycerol release did not change. The uptake of oleate by the rat hind leg was dependent on the medium concentration in a range of 0.7-1.9mM oleate, and was stimulated by insulin. Glucose uptake was not influenced by oleate, whether sodium was present or not. When the leg was perfused with [1-14C]oleate, 75% of the incorporated fatty acids were found in muscle lipids, 10% were oxidized to CO2, and 5% were recovered in bone lipids. The absolute amount of oleate oxidation was not altered by insulin. In all experiments with and without glucose in the medium, 70-80% of the 14C label incorporated into muscle lipids was found in the triglyceride fraction. In the presence of glucose, insulin significantly increased the incorporation of [1-14C]oleate into muscle triglycerides, whereas no insulin effect, either on fatty acid uptake or on triglyceride formation, could be observed when glucose was omitted from the perfusate. The present results indicate that a "glucose-fatty acid cycle" as found in rat heart muscle does not operate in resting peripheral skeletal muscle tissue. They also demonstrate that the stimulating effect of insulin on muscular fatty acid uptake and triglyceride synthesis is dependent on glucose supply. This finding can be intrepreted as a stimulation of fatty acid esterification by sn-glycerol 3-phosphate derived from an increased glucose turnover, which is in turn due to insulin.  相似文献   

7.
Gas-liquid chromatography with radioactivity detection (Radio-GLC) was investigated as an analytical means of determining the fractional turnover rates of plasma free fatty acids. For this purpose normal dogs were infused with 1.838 muCi/min of [1-14C]oleic acid complexed with albumin and plasma samples were taken at 0 to 110 minutes. The plasma free fatty acids were isolated by a modified Dole extraction and the methyl esters, prepared by diazomethylation, were identified and quantitated by GLC and radio-GLC using radioactive methyl heptadecanoate as internal standard. The study demonstrates that physiologically feasible infusion rates and loads of radioactive acids can be found which permit accurate analyses of plasma free fatty acids by radio-GLC. During a 2-hour infusion no labeled acid other than oleic appeared in plasma indicating that the method could be used to study the turnover of a mixture of fatty acids simultaneously. These results also indicate that conventional methods of determination of radioactivity in purified extracts can be employed without concern for recycling of label among the fatty acids, at least over short periods of time. The radio-GLC technique described yields approximately 20% higher fractional turnover times for oleic acid than do standard methods.  相似文献   

8.
The present study investigated the role of amylin in lipid metabolism and its possible implications for insulin resistance. In 5- to 7-h-fasted conscious rats, infusion of rat amylin (5 nmol/h for 4 h) elevated plasma glucose, lactate, and insulin (P <0.05 vs. control, repeated-measures ANOVA) with peak values occurring within 60 min. Despite the insulin rise, plasma nonesterified fatty acids (NEFA) and glycerol were also elevated (P < 0.001 vs. control), and these elevations (80% above basal) were sustained over the 4-h infusion period. Although unaltered in plasma, triglyceride content in liver was increased by 28% (P < 0.001) with a similar tendency in muscle (18%, P = 0.1). Infusion of the rat amylin antagonist amylin-(8-37) (125 nmol/h) induced opposite basal plasma changes to amylin, i.e., lowered plasma NEFA, glycerol, glucose, and insulin levels (all P < 0.05 vs. control); additionally, amylin-(8-37) blocked amylin-induced elevations of these parameters (P < 0.01). Treatment with acipimox (10 mg/kg), an anti-lipolytic agent, before or after amylin infusion blocked amylin's effects on plasma NEFA, glycerol, and insulin but not on glucose and lactate. We conclude that amylin could exert a lipolytic-like action in vivo that is blocked by and is opposite to effects of its antagonist amylin-(8-37). Further studies are warranted to examine the physiological implications of lipid mobilization for amylin-induced insulin resistance.  相似文献   

9.
A study of the effects of glycerol deprivation on the content and metabolism of the phospholipids of a glycerol auxotroph of Staphylococcus aureus showed that (i) there was an increase in the proportions of lysylphosphatidylglycerol (LPB) and a concomitant decrease in the proportion of phosphatidylglycerol. The total phospholipid content per sample and the proportion of cardiolipin did not change, but the phosphatidic acid increased transiently and then fell to pretreatment levels. (ii) The loss of (32)P from the lipids during the chase in a pulse-chase experiment was essentially the same in phosphatidylglycerol, cardiolipin, and phosphatidic acid during glycerol deprivation or growth in the presence of glycerol. LPG lost half the radioactivity in slightly more than two doubling times when grown with glycerol. In the absence of glycerol, (32)P accumulated in LPG for about 20 min and then stopped, after which time there was no apparent turnover. (iii) During glycerol deprivation, the initial (32)P incorporation decreased sixfold compared to that of the control with glycerol. The initial incorporation into LPG decreased only 2.5-fold, whereas that of PG decreased 45-fold. (iv) During glycerol deprivation, the free fatty acid content increased from 1.2 to 12.5% of the total extractable fatty acids and then slowly decreased. The increase was largely iso- and anti-iso-branched 21-carbon-atom fatty acids. In glycerol-supplemented cultures, the major fatty acids were branched 14- to 18-carbon fatty acids. The decrease in longer chain free fatty acids after 60 min represented their esterification into lipids. (v) During glycerol deprivation ribonucleic acid synthesis and cell growth continued for 40 min and protein synthesis continued for 90 min. Then synthesis and growth stopped. (vi) After the addition of glycerol to glycerol-deprived cells, (32)P and (14)C-glycerol were incorporated into the phospholipids without lag; ribonucleic acid, protein synthesis, and cell growth began after a 5- to 10-min lag at the pretreatment rate. The initial rate of lipid synthesis after the addition of glycerol was three times greater than the growth rate. This rapid rate continued for about 25 min until the lipid content and proportions of LPG and phosphatidylglycerol were restored.  相似文献   

10.
Stimulation of VLDL production by increasing fatty acid availability is now well established. However, a possible regulatory role of glycerol, another lipid precursor, in VLDL synthesis by the liver has not yet been substaniated. The present experiments investigate this problem using the isolated perfused rat liver. [14C] Glycerol uptake and metabolism were studied at two different glycerol concentrations: 1 mumol/perfusate (control) or 1.6 mmol/perfusate. VLDL production and lipid synthesis were investigated using [14C]leucine and several labelled fatty acids as precursors in control and glycerol-overloaded livers. Neoglycogenesis and lipogenesis from glycerol carbons are negligible in our conditions. The absolute amount of glycerol, but not the precentage, taken up by the liver, increased after raising its concentration in the perfusate. A major part of exogenous (plasmatic) glycerol was esterified with endogenous (non plasmatic) fatty acids. Incorporation of radioactive fatty acids into liver or plasma lipids was lower than in the the control group. Significant differences were observed between saturated and unsaturated fatty acids used as lipid precursors. Production of VLDL as assessed by radioactive leucine and fatty acid incorporation in the VLDL of the perfusate was depressed by glycerol. Glycerol partly inhibits the normal stimulation of VLDL production by plasmatic fatty acid overload.  相似文献   

11.
Parameters of plasma free fatty acid metabolism (pool size, half time, disappearance rate, turnover time and absolute turnover rate), the influx of plasma free fatty acids into the glycerides of brown adipose tissue and the pathway of triglyceride synthesis in brown adipose tissue (glycerol-1-phosphate versus monoglyceride pathway) were examined after intravenous injection of [1-14C]palmitate in newborn rabbits. In the thermoneutral environment of 35 degrees C the turnover rate of plasma free fatty acids was 10.20 mumol/min per 100 g body weight and its flux into the glycerides of brown adipose tissue 0.367 mumol/min per 100 g body weight. Cold exposure at an ambient temperature of 20 degrees C caused a decrease to 5.84 mumol/min and 0.207 mumol/min per 100 g body weight, respectively. Both under basal conditions at an ambient temperature of 35 degrees C and under cold-induced thermogenesis at an ambient temperature of 20 degrees C triglyceride synthesis in brown adipose tissue ran through the glycerol 1-phosphate pathway.  相似文献   

12.
In 1975, Cronan et al. (J. Biol. Chem. 250:5835-5840) reported that free fatty acids accumulated during glycerol starvation of an Escherichia coli glycerol auxotroph. On the basis of labeling experiments showing significant incorporation of [14C]acetate into the fatty acid fraction of glycerol-starved cells, these authors concluded that fatty acid synthesis proceeded normally in the absence of phospholipid synthesis. Since these findings might have been due to an increase in the intracellular specific activity of the [1-14C]acetyl coenzyme A pool of the glycerol-starved cells, we reexamined the effect of glycerol starvation on fatty acid synthesis. We found that (i) the incorporation of 3H2O and/or [2,3-14C]succinate into the fatty acid fraction of glycerol auxotrophs is severely reduced during starvation, (ii) the incorporation of [1-14C]acetate into the lipid fraction of an acetate-requiring glycerol auxotroph is inhibited by 95% during glycerol starvation, and (iii) the accumulation of fatty acids, as measured by microtitration, in glycerol-starved cells is less than 10% that of glycerol-supplemented cells. These results indicate that fatty acid synthesis is inhibited in the absence of phospholipid synthesis of E. coli.  相似文献   

13.
The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of approximately 60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.  相似文献   

14.
The effect of relative body fat mass on exercise-induced stimulation of lipolysis and fatty acid oxidation was evaluated in 15 untrained men (5 lean, 5 overweight, and 5 obese with body mass indexes of 21 +/- 1, 27 +/- 1, and 34 +/- 1 kg/m2, respectively, and %body fat ranging from 12 to 32%). Palmitate and glycerol kinetics and substrate oxidation were assessed during 90 min of cycling at 50% peak aerobic capacity (VO2 peak) by use of stable isotope-labeled tracer infusion and indirect calorimetry. An inverse relationship was found between %body fat and exercise-induced increase in glycerol appearance rate relative to fat mass (r2 = 0.74; P < 0.01). The increase in total fatty acid uptake during exercise [(micromol/kg fat-free mass) x 90 min] was approximately 50% smaller in obese (181 +/- 70; P < 0.05) and approximately 35% smaller in overweight (230 +/- 71; P < 0.05) than in lean (354 +/- 34) men. The percentage of total fatty acid oxidation derived from systemic plasma fatty acids decreased with increasing body fat, from 49 +/- 3% in lean to 39 +/- 4% in obese men (P < 0.05); conversely, the percentage of nonsystemic fatty acids, presumably derived from intramuscular and possibly plasma triglycerides, increased with increasing body fat (P < 0.05). We conclude that the lipolytic response to exercise decreases with increasing adiposity. The blunted increase in lipolytic rate in overweight and obese men compared with lean men limits the availability of plasma fatty acids as a fuel during exercise. However, the rate of total fat oxidation was similar in all groups because of a compensatory increase in the oxidation of nonsystemic fatty acids.  相似文献   

15.
In order to study the quantitative relationship between fatty acid synthesis and pentose phosphate-cycle activity under different hormonal and dietary conditions affecting the extent of glucose uptake, cells isolated from rat epididymal adipose tissue were incubated in bicarbonate buffer containing [U-(14)C]-, [1-(14)C]- or [6-(14)C]-glucose. From the amount of glucose taken up, the production of lactate and pyruvate, and the incorporation of (14)C from differently labelled [(14)C]glucose into CO(2), fatty acids and glyceride glycerol, the rates of glucose metabolism via different pathways and the extent of lipogenesis under various experimental conditions were determined. The contribution of the pentose phosphate-cycle to glucose metabolism under normal conditions was calculated to be 8%. Starvation and re-feeding, and the presence of insulin, caused an enhancement of glucose uptake, pentose phosphate-cycle activity and fatty acid synthesis. Plots of both pentose phosphate-cycle activity and fatty acid synthesis versus glucose uptake revealed that the extent of glucose uptake, over a wide range, determines the rates of fatty acid synthesis and glucose metabolism via the pentose phosphate cycle. A balance of formation and production of nicotinamide nucleotides in the cytoplasm was established. The total amount of cytoplasmic NADH and NADPH formed was only in slight excess over the hydrogen equivalents required for the synthesis of fatty acids, glyceride glycerol and lactate. Except in cells from starved animals, the pentose phosphate cycle was found to provide only about 60% of the NADPH required for fatty acid synthesis. The results are discussed with respect to an overall control of the different metabolic and biosynthetic reactions in the fat-cells by the amount of glucose transported into the cell.  相似文献   

16.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

17.
We have shown that insulin controls endogenous glucose production (EGP) indirectly, via suppression of adipocyte lipolysis. Free fatty acids (FFA) and EGP are suppressed proportionately, and when the decline in FFA is prevented during insulin infusion, suppression of EGP is also prevented. The present study tested the hypothesis that suppression of lipolysis under conditions of constant insulin would yield a suppression of EGP. N(6)-cyclohexyladenosine (CHA) was used to selectively suppress adipocyte lipolysis during euglycemic clamps in conscious male dogs. FFA suppression by CHA caused suppression of EGP. Liposyn control experiments, which maintained FFA levels above basal during CHA infusion, completely prevented the decline in EGP, whereas glycerol control experiments, which maintained glycerol levels close to basal, did not prevent a decline in EGP. These controls suggest that the EGP suppression was secondary to the suppression of FFA levels specifically. A difference in the sensitivity of FFA and EGP suppression (FFA were suppressed approximately 85% whereas EGP only declined approximately 40%) was possibly caused by confounding effects of CHA, including an increase in catecholamine and glucagons levels during CHA infusion. Thus suppression of lipolysis under constant insulin causes suppression of EGP, despite a significant rise in catecholamines.  相似文献   

18.
The effect of semisynthetic human insulin on hepatic glucose output, peripheral glucose clearance, plasma levels of C-Peptide, free fatty acids and amino acids was compared with purified pork insulin using the glucose clamp technique. 8 normal overnight-fasted subjects received intravenous infusions of either human or porcine insulin at 20 mU/m2.min(-1) during 120 min achieving plasma insulin levels of approximately equal to 50 mU/l. Plasma glucose levels were maintained at euglycaemia by variable rates of glucose infusion. Hepatic glucose production measured by continuous infusion of 3-(3) H-glucose was similarly suppressed by both insulins to rates near zero. The metabolic clearance rate of glucose increased during infusion of human insulin by 120%, C-peptide levels decreased by 41% and plasma FFA concentrations fell by 74%. The respective changes during infusion of pork insulin were similar, 118%, 48% and 72%. Both insulins decreased the plasma levels of branched-chain amino acids, tyrosine, phenylalanine, methionine, serine and histidine similarly. Thus, the results demonstrate that semisynthetic human and porcine insulin are aequipotent with respect to suppression of hepatic glucose output, stimulation of glucose clearance, inhibition of insulin secretion, lipolysis and proteolysis.  相似文献   

19.
Leptin-induced increases in insulin sensitivity are well established and may be related to the effects of leptin on lipid metabolism. However, the effects of leptin on the levels of lipid metabolites implicated in pathogenesis of insulin resistance and the effects of leptin on lipid-induced insulin resistance are unknown. The current study addressed in rats the effects of hyperleptinemia (HL) on insulin action and markers of skeletal muscle (SkM) lipid metabolism in the absence or presence of acute hyperlipidemia induced by an infusion of a lipid emulsion. Compared with controls (CONT), HL increased insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp ( approximately 15%), and increased SkM Akt ( approximately 30%) and glycogen synthase kinase 3 alpha ( approximately 52%) phosphorylation. These improvements in insulin action were associated with decreased SkM triglycerides (TG; approximately 61%), elevated ceramides ( approximately 50%), and similar diacylglycerol (DAG) levels in HL compared with CONT. Acute hyperlipidemia in CONT decreased insulin sensitivity ( approximately 25%) and increased SkM DAG ( approximately 33%) and ceramide ( approximately 60%) levels. However, hyperlipidemia did not induce insulin resistance or SkM DAG and ceramide accumulation in HL. SkM total fatty acid transporter CD36, plasma membrane fatty acid binding protein, acetyl Co-A carboxylase phosphorylation, and fatty acid oxidation were similar in HL compared with CONT. However, HL decreased SkM protein kinase C theta (PKC theta), a kinase implicated in mediating the detrimental effects of lipids on insulin action. We conclude that increases in insulin sensitivity induced by HL are associated with decreased levels of SkM TG and PKC theta and increased SkM insulin signaling, but not with decreases in other lipid metabolites implicated in altering SkM insulin sensitivity (DAG and ceramide). Furthermore, insulin resistance induced by an acute lipid infusion is prevented by HL.  相似文献   

20.
P Jiang  J E Cronan  Jr 《Journal of bacteriology》1994,176(10):2814-2821
The effects of inhibition of Escherichia coli phospholipid synthesis on the accumulation of intermediates of the fatty acid synthetic pathway have been previously investigated with conflicting results. We report construction of an E. coli strain that allows valid [14C]acetate labeling of fatty acids under these conditions. In this strain, acetate is a specific precursor of fatty acid synthesis and the intracellular acetate pools are not altered by blockage of phospholipid synthesis. By use of this strain, we show that significant pools of fatty acid synthetic intermediates and free fatty acids accumulate during inhibition of phospholipid synthesis and that the rate of synthesis of these intermediates is 10 to 20% of the rate at which fatty acids are synthesized during normal growth. Free fatty acids of abnormal chain length (e.g., cis-13-eicosenoic acid) were found to accumulate in glycerol-starved cultures. Analysis of extracts of [35S]methionine-labeled cells showed that glycerol starvation resulted in the accumulation of several long-chain acyl-acyl carrier protein (ACP) species, with the major species being ACP acylated with cis-13-eicosenoic acid. Upon the restoration of phospholipid biosynthesis, the abnormally long-chain acyl-ACPs decreased, consistent with transfer of the acyl groups to phospholipid. The introduction of multicopy plasmids that greatly overproduced either E. coli thioesterase I or E. coli thioesterase II fully relieved the inhibition of fatty acid synthesis seen upon glycerol starvation, whereas overexpression of ACP had no effect. Thioesterase I overproduction also resulted in disappearance of the long-chain acyl-ACP species. The release of inhibition by thiosterase overproduction, together with the correlation between the inhibition of fatty acid synthesis and the presence of abnormally long-chain acyl-ACPs, suggests with that these acyl-ACP species may act as feedback inhibitors of a key fatty acid synthetic enzyme(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号