首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Despite high commercial interest, the success of biotechnological applications in cotton (Gossypium hirsutum) has been limited due to difficulties in genetic transformation. Major problems have been genotype dependence and low frequency of somatic embryogenesis, making it difficult to regenerate plants from transgenic tissue. This study reports an increase in somatic embryogenesis efficiency and the induction of developmental synchrony in embryogenic callus cultures of cotton by a single cycle of myo-inositol depletion in liquid culture. Calluses were initiated on hypocotyl or cotyledon explants of cultivar Coker 312 by culturing these explants on callus-inducing solid medium [Murashige and Skoog salts plus vitamins of Gamborg's B5 medium, 30 g l−1 glucose, 100 mg l−1 myo-inositol, 2.2 μM 2,4-dichlorophenoxyacetic acid, and 0.88 μM 6-benzyladenine]. The calluses were transferred to an identical liquid basal medium devoid of plant growth regulators. This induced the development of embryogenic cells. Friable clumps of cells formed after 20 d in the medium were selectively collected over filter mesh 40 subjected to one cycle of myo-inositol starvation. This induced a highly synchronized embryogenesis in the culture. The optimized protocol gave 100% embryos at the globular stage, out of which more than 80% developed into bipolar torpedo-stage embryos. About 68% of these were converted to plantlets by subculturing onto a simplified solid medium, and finally grown into healthy, fertile plants.  相似文献   

2.
Influence of boron on somatic embryogenesis in papaya (Carica papaya L.) cv. Honey Dew was investigated. Immature zygotic embryos were grown in the induction medium containing Murashige and Skoog basal salts, with B5 vitamins, picloram (1 mg dm−3) or 2,4-dichlorophenoxy acetic acid (2 mg dm−3) and different concentrations of boric acid (30 to 500 mg dm−3). Maximum somatic embryo initiation was observed at 62 mg dm−3 boric acid irrespective of the growth regulator used. The cotyledonary stage somatic embryos were germinated on MS basal medium devoid of growth regulators. The regenerated plantlets were hardened under greenhouse conditions and transferred to field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

4.
Population dynamics and zonation of the amphipods Bathyporeia pilosa and B. sarsi, co-occurring on some beaches, were studied through monthly sampling of eight cross-shore transects along the Belgian coast (October 2003–October 2004). Their biomass and production were assessed for the first time. Abundance and biomass of B. pilosa were ten times higher along western ultra-dissipative transects than along slightly more reflective, eastern transects. For B. sarsi (less prominent), differences between the two westernmost transects (2–5× higher) and all others were observed, whereas P/B ratio was comparable for all. B. pilosa could reach two times higher abundance and biomass and higher levels of production (max B. sarsi = 7,580 g m−2 y−1; max B. pilosa = 16,040 g m−2 y−1), while the species was nearly absent from the eastern transects. Continuous reproduction and recruitment with three relative peaks of the latter (February, July, October) were observed. Fecundity showed parallel temporal variation for both species, peaking in February and September–October. Interestingly, the July relative “recruitment” peak could not be explained by relative abundance of gravid females or fecundity, but was probably caused by adult mortality. Both species displayed comparable gonad production (B. pilosa: P g  = 0.73 mg/ind year; B. sarsi: P g  = 0.71 mg/ind year), but B. pilosa produced fewer yet larger embryos. Peak abundances were found at 436 ± 25 SD cm (B. pilosa) and 357 ± 40 SD cm (B. sarsi) above MLLWS, corresponding to a 40–62 m cross-shore distance between the peaks of both species. The occupied cross-shore range was larger for B. sarsi than for B. pilosa (35–54 m), for females than for males (15–23 m), and for adults than for juveniles of B. pilosa (5–8 m). Both species displayed many comparable life history features. Differences in abundance and biomass may be related to beach morphodynamics and zonation.  相似文献   

5.
Summary Well-developed somatic embryos were selected from a repetivively somatic embryo line derived from embryonic axes of immature zygotic embryos of English walnut ‘No. 120’ (Juglans regia L.) for germination and conversion studies. In germinating dishes, somatic embryos germinated into only shoots, only roots, or both shoots and roots. Without any pretreatment, 28% somatic embryos germinated, while those treated with 2.5–5.0 mg 1−1 (7.2–14.4 μmol) gibberellic acid (GA3) germinated at 25–28% and those receiving a cold treatment of 2–3 mo. at 3–4°C germinated at 30–43%. However, only 4–19% of the germinating embryos showed both shoots and roots. Treated with desiccation, either with CaCl2·6H2O or Ca(NO3)2·4H2O at 20°C in the dark for 3 d, somatic embryos germinated at 85–91%, 57–69% of which had both shoots and roots. Treatment with 2 mo. cold storage in combination with desiccation using Ca(NO3)2·4H2O resulted in 92% of somatic embryos germinating, 70% of which showed both shoots and roots. No significant differences were observed between solid and liquid germination media. After transferring the germinating embryos to plantlet development media, 52–63% of those with both shoots and roots developed into plantlets while 11% with only shoots or 9% with only roots converted into plantlets. Plantlet development was improved by using lower medium salts and sucrose concentrations. The addition of activated charcoal enhanced root development, particularly root branching. Of 131 plants transplanted, 91 plants were acclimatized to a greenhouse.  相似文献   

6.
In the present study an efficient somatic embryogenesis method has been developed in Catharanthus roseus. Friable embryogenic callus was induced from hypocotyl of in vitro germinated seeds on Murashige and Skoog basal nutrient media supplemented with various auxins particularly 2,4-D (1.0 mg l−1). However, only NAA (1.0 mg l−1) produced somatic embryos in cultures. Embryo proliferation was even high on the same medium added with BAP. Cotyledonary somatic embryo germinated and converted into plantlets in BAP (0.5 mg l−1) added medium following a treatment with gibberellic acid (1.0 mg l−1) for maturation. Carbon sources and concentrations had a marked influence on maturation process. Plantlet conversion was better achieved when embryos were matured on 3% fructose or 3–6% maltose. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as raw material, genetic modification to embryo precursor cell may improve alkaloid yield further.  相似文献   

7.
Plants of two cytotypes (2n=2x=20, and 2n=3x=30) of pinto peanut (Arachis pintoi Krapov. & W.C. Gregory) were regenerated through somatic embryogenesis. Embryogenic calli were induced from shoot tips or immature leaves dissected from in vitro growing plants. In the case of the diploid peanut the best somatic embryogenesis was achieved when shoot tips were cultured on Murashige and Skoog (MS) medium supplemented with 10 mg dm−3 Picloram (PIC) and 0.1 mg dm−3 6-benzylaminopurine (BAP) or when explants from immature leaves were cultured on MS + 10 mg dm−3 PIC + 0.01 mg dm−3 BAP. In the case of triploid peanut the highest number of somatic embryos was obtained when shoot tips were cultured on MS + 10 mg dm−3 PIC + 0.01 mg dm−3 BAP or when immature leaves were cultured on MS + 20 mg dm−3 PIC + 0.01 mg dm−3 BAP. Somatic embryos were converted into plants by culture on MS + 0.01 mg dm−3 naphthaleneacetic acid + 0.01 mg dm−3 BAP. Plants were successfully transferred to pots in greenhouse.  相似文献   

8.
Plants of two accessions of Arachis glabrata were regenerated via somatic embryogenesis. Embryogenic calli were initiated from leaflet explants on Murashige and Skoog medium supplemented with picloram alone or picloram in combination with 6-benzylaminopurine. Leaflets of accession A6138 induced the highest percentage of somatic embryos in media composed of 10 mg dm−3 and 15 mg dm−3 picloram. In contrast, 5 mg dm−3 picloram with 0.1 mg dm−3 6-benzylaminopurine was one of the most effective combinations in accession AF385. MS medium supplemented with 2 g dm−3 activated charcoal (AC) used for 30 days was the most effective for embryo maturation. After 20 days of culture on MS medium devoid of growth regulators, 6 % of embryos converted into plantlets in accession A6138.  相似文献   

9.
Summary Mature zygotic embryos of eight (open-pollinated) families of loblolly pine (Pinus taeda L.) were cultured on eight different basal salt formulations, each supplemented with 36.2 μM 2,4-dichlorophenoxyacetic acid, 17.8 μM 6-benzyladenine, 18.6 μM kinetin, 500 mg l−1 casein hydrolysate, and 500 mg l−1 l-glutamine for 9 wk; embryogenic tissue was formed on cotyledons, hypocotyls, and radieles of mature zygotic embryos. Callus was subcultured on the callus proliferation medium, the same as the induction medium but with one-fifth concentration of auxin and cytokinin for 9 wk. On this medium a white to translucent, glossy, mucilaginous embryogenic callus containing embryogenic suspensor masses (ESMs) was obtained. The highest frequency of explants forming embryogenic tissue, 17%, occurred on a modified Murashige and Skoog salts basal medium containing the concentration of KNO3, Ca(NO3)2·4H2O, NH4NO3, KCl, ZnSO4·7H2O, and MnSO4·H2O, 720, 1900, 400, 250, 25.8, and 25.35 mg l−1, respectively. Embryogenic suspension cultures were established by culturing embryogenic callus in liquid callus proliferation medium. Liquid cultures containing ESMs were transferred to medium containing abscisic acid, polyethylene glycols, and activated charcoal for stimulating the production of cotyledonary somatic embryos. Mature somatic embryos germinated for 4–12 wk on medium containing indole-butyric acid, gibberellic acid, 6-benzyladenine, activated charcoal, and reduced sucrose concentration (15 g l−1). Two hundred and ninety-one regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1∶1∶1) mixture, then the plants were transplanted to soil in the earth, and 73 plantlets survived in the field.  相似文献   

10.
Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.  相似文献   

11.
Experiments were performed to evaluate the capacity of quince (Cydonia oblonga Mill.) leaves to regenerate somatic embryos and shoots and/or roots simultaneously. Leaves, treated for 2 d in liquid medium containing 2.5 mg dm−3 2,4-dichlorophenoxyacetic acid were cultured for 0, 3, 6, 9, 12, 15, 18, 21 d on a gelled medium supplemented with 1 mg dm−3 kinetin (Kin) and 0.1 mg dm−3 naphthalenacetic acid (NAA) and were transferred to a medium either without growth regulator (GR-) or containing 0.6 mg dm−3 6-benzylaminopurine (BA) + 0.2 mg dm−3 gibberellic acid (GA3) + 0.06 mg dm−3 indole-3-butyric acid (IBA) (GR+). Leaves producing somatic embryos (SEs) only, or adventitious roots (Rs) only, or SEs+Rs simultaneously, were detected on GR- culture medium; on GR+ medium, leaves producing adventitious shoots (Ss) only, SEs+Ss or SEs+Rs+Ss simultaneously, also appeared. Leaves producing both Ss+Rs were never detected. Proportions among the various types of regenerating leaves varied according to both the length of Kin+NAA treatment and the presence or absence of GR in the transfer medium. The greatest variations, both on GR− and on GR+, took place within the first 9 d of culturing on Kin+NAA. After this period, no further substantial differences in the trend of each type of regenerating leaf were observed. The length of the treatment with Kin+NAA also modified the proportions between the different types of morphogenic structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Summary Somatic embryos of grapevine (Vitis vinifera L.) ‘Chardonnay’ were produced from liquid suspension cultures. Mature somatic embryos were blot dried briefly in the laminar flow hood and germinated directly in Magenta GA-7 Vessels containing one of the following potting media: (1) sand, (2) commercial potting mixture (CPM), or (3) CPM overlaid with sand. Each vessel containing 20 ml of distilled water and the potting medium was sterilized by autoclaving for 30 min and cooled overnight before inoculating the somatic embryos. Five somatic embryos were placed in each vessel under aseptic conditions. The vessels were closed and incubated at 26±2°C, 16 h photoperiod at 75 μmol s−1 m−2 light intensity. Results revealed that CPM overlaid with sand was best for plant development. There was more contamination of somatic embryos on pure CPM. Since direct seeding bypasses at least two subcultures in agar medium, it has implications for use of somatic embryos as ‘synthetic seeds’ for clonal plant production. This study shows that somatic embryos of grapevine can be handled with some of the convenience of seeds, emphasizing the feasibility for further automating in vitro plant production, which might be especially useful for new varieties where propagation material is limited.  相似文献   

13.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

14.
Regester KJ  Lips KR  Whiles MR 《Oecologia》2006,147(2):303-314
Breeding adults and metamorphosing larval amphibians transfer energy between freshwater and terrestrial ecosystems during seasonal migrations and emergences, although rarely has this been quantified. We intensively sampled ambystomatid salamander assemblages (Ambystoma opacum,A. maculatum, and A. tigrinum) in five forested ponds in southern Illinois to quantify energy flow associated with egg deposition, larval production, and emergence of metamorphosed larvae. Oviposition by female salamanders added 7.0–761.4 g ash-free dry mass (AFDM) year−1 to ponds (up to 5.5 g AFDM m−2 year−1). Larval production ranged from 0.4 to 7.4 g AFDM m−2 year−1 among populations in three ponds that did not dry during larval development, with as much as 7.9 g AFDM m−2 year−1 produced by an entire assemblage. Mean larval biomass during cohort production intervals in these three ponds ranged from 0.1 to 2.3 g AFDM m−2 and annual P/B (production/biomass) ranged from 4 to 21 for individual taxa. Emergent biomass averaged 10% (range=2–35%) of larval production; larval mortality within ponds accounted for the difference. Hydroperiod and intraguild predation limited larval production in some ponds, but emerging metamorphs exported an average of 70.0±33.9 g AFDM year−1 (range=21.0–135.2 g AFDM year−1) from ponds to surrounding forest. For the three ponds where larvae survived to metamorphosis, salamander assemblages provided an average net flux of 349.5±140.8 g AFDM year−1 into pond habitats. Among all ponds, net flux into ponds was highest for the largest pond and decreased for smaller ponds with higher perimeter to surface area ratios (r 2 =0.94, P<0.05, n=5). These results are important in understanding the multiple functional roles of salamanders and the impact of amphibian population declines on ecosystems. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
To understand the background of the strong variation and recent decline of stocks and production of mussels (Mytilus edulis) on tidal flats of the Wadden Sea, we analysed long-term (twice-annual for 26 years) and multi-station (15 sites) estimates of numbers, mean individual weights, biomass, and annual production on Balgzand, a 50-km2 tidal-flat area in the westernmost part of the Wadden Sea (The Netherlands). Somatic production was estimated from summed growth increments of soft tissues per half-year period and expressed in ash-free dry mass (AFDM). In adults, positive values in spring/summer regularly alternated with negative values in autumn/winter, when up to ∼25% (mean: 14%) of individual weight gains in the preceding season were lost. No weight losses were observed during the first winter of the life of mussels. The 26-year mean of net somatic tissue production P amounted to 5.5 g AFDM m−2 a−1 at a mean biomass B of 3.2 g AFDM m−2; the ratio P/B varied strongly with age composition of the mussel population and ranged between 0.5 and 3.0 a−1 (mean: 1.7). Within the restricted areas of mussel beds, mean biomass and annual production values were two orders of magnitude higher. In the Wadden Sea, mussel beds cover a typical 1% of extensive tidal flat areas. Numerical densities of recruits showed straight-line relationships with subsequent life-time year-class production. Once recruits had reached an age of ∼10 months, their numbers predicted subsequent production within narrow limits. Production per recruit averaged 0.21 g AFDM for 10-mo recruits and was not related to recruit density. Local variation in annual production varied strongly, with maximal values between mid-tide and low-tide level, where recruitment was also maximal. Production per recruit was higher at low than at high intertidal levels. Frequently failing recruitment is indicated as the main cause of declining mussel stocks in the Wadden Sea. As in other bivalve species, a declining frequency of the occurrence of cold winters appears to govern declining recruitment success and consequently declining production.  相似文献   

16.
Summary Somatic embryogenesis was induced in callus cultures derived from nucellar tissue of cashewnut (Anacardium occidentale L.). Callus was obtained from nucellar tissue after 3 wk of culture on semisolid Murashige and Skoog (MS) basal medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 5 μM)+gibberellic acid (GA3, 15 μM)+N6-benzyladenine (BA, 5 μM). This callus gave rise to an embryogenic mass after 9 wk on maintenance medium containing 2,4-D (10 μM)+GA3 (15 μM)+4% sucrose +0.5% activated charcoal +10% coconut water (CW) +0.05% casein hydrolysate (CH). The embryogenic mass, after transfer to medium supplemented with 2,4-D (5 μM)+GA3 (30 μM)+4% sucrose +0.5% activated charcoal +10% CW +0.05% CH, gave rise to somatic embryos. The developmental stages of somatic embryos were observed using light and stereo microscopes. Histological study of somatic embryo development was also carried out. The present study would be useful for clonal propagation, and variety improvement in cashewnut, which is essential due to its increasing demand and export potential.  相似文献   

17.
The influence of culture age on biomass production and alkaloid yield of “hairy roots” obtained after infection ofDatura stramonium L. withAgrobacterium ATCC 15834 was investigated. Maximal hyoscyamine yield was obtained with roots harvested after six weeks. Fluctuations were found for tropine yield, the precursor of the ring moiety of hyoscyamine. These indicate a continuous conversion to hyoscyamine during the exponential growth phase. The effect of the ion-balance was investigated by preparing five different media that only differed in their ionic composition. The ionic interactions between macroelements, differently influenced biomass production and alkaloid yield. As a result, highest biomass yield was found with NO3 - and K+-dominance, whereas hyoscyamine yield was highest with the culture medium in which SO4 2− and K+ were dominant. Shifting the intercationic balance to strongly towards Ca2+ caused an overall reduced metabolism, since as well biomass yield as hyoscyamine yield was lowest with the NO3 Ca2+-medium. Also tropine yield was affected by the ion-balance, indicating that this culture parameter also influences alkaloid synthesis.[/p]  相似文献   

18.
Embryogenic callus in Catharanthus roseus was initiated from hypocotyl on Murashige and Skoog’s (MS) medium supplemented with 1.0–2.0 mg dm−3 of 2,4-dichlorophenoxyacetic acid (2,4-D) or chlorophenoxyacetic acid (CPA). Calli from other sources were non-embryogenic. Numerous somatic embryos were induced from primary callus on MS medium suplemented with naphthalene acetic acid (NAA) within two weeks of culture. Embryo proliferation was much faster on medium supplemented with 6-benzylaminopurine (BAP). After transfer to medium with gibberellic acid (GA3, 1.0 mg dm− 3) mature green embryos were developed and germinated well into plantlets on MS liquid medium supplemented with 0.5 mg dm−3 BAP. Later, embryos with cotyledonary leaves were subjected to different auxins treatments for the development of roots. Before transfer ex vitro, plantlets were cultivated on half strength MS medium containing 3 % sucrose and 0.5 mg dm−3 BAP for additional 2 weeks. Additionally, the effect of liquid medium has been evaluated at different morphogenetic stages.  相似文献   

19.
Summary Plant regeneration through direct somatic embryogenesis was achieved from root segments derived from in vitro shoots of Rauvolfia micrantha Hook. f. (Apocynaceae) grown for 6 wk in half-strength Murashige and Skoog (MS) medium with 3% sucrose, 100 mgl−1 myo-inositol, and 0.5 mgl−1 α-naphthaleneacetic acid (NAA). The effects of photoperiod and plant growth regulators (PGRs) in half-strength MS medium were studied for the rapid and maximum induction of somatic embryos. The characteristic globular or heart-shaped stages of somatic embryogenesis were not found and cotyledonary stage embryos occasionally appeared without the intervention of callus in total darkness and 16-h photoperiod. Root segments cultured in the medium containing 0.1 mgl−1 NAA and 0.2 mgl−1 6-benzyladenine (BA) under 16-h photoperiod showed the maximum frequency (39%) of embryogenesis. The frequency of embryo formation was increased to 63% when they were cultured in medium with 0.1 mgl−1 NAA and 0.2 mgl−1 BA in the dark for 4wk, then grown under the 16-h photoperiod. Explants with developing embryos developed into plants after transfer to half-strength MS medium supplemented with 0.1 mgl−1 BA and 0.05 mgl−1 NAA. The well-developed plants were hardened and most plants (80%) survived and were phenotypically similar to the mother plants.  相似文献   

20.
Summary A somatic embryogenesis protocol was developed for Eschscholzia californica Chan. (California poppy) using embryogenic cell suspensions and optimized media conditions. Rapidly-growing, finely-dispersed embryogenic cell suspension cultures were established from embryogenic callus and maintained in B5 liquid media supplemented with 0.5 mg 1−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid. Culture conditions were optimized by investigating the effect of basal media composition, gyratory shaker speed, various carbon sources, different cytokinins, and AgNO3 on the efficiency of somatic embryogenesis. After 40 d in culture, the somatic embryos that formed were counted and their overall growth expressed as pecked cell volume. The selected media consisted of either Gamborg (B5) or Murashige and Skoog (MS) salts and vitamins supplemented with 40 g 1−1 (117 mM) sucrose, 0.05 mg 1−1 (0.22 μM) 6-benzylaminopurine, and 10 mg l−1 (58.8 μM) AgNO3. Somatic embryo production was substantially reduced at shaker speeds above 40 rpm. Glucose and snerose were the most effective carbon sources, whereas fructose, galactose, and maltose resulted in a reduced yield and growth of somatic embryos. The development of somatic embryos was promoted by AgNO3 at concentrations below 10 mg l−1 (58.8 μM). A semi-solid medium containing 1.5 g l−1 Gel-rite produced the highest frequency of somatic embryo conversion, and promoted the efficient growth of plantlets. Using the reported protocol, over 500 viable somatic embryos were produced per 25 ml of embryogenic cell suspension culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号