首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The first stages of cell wall formation were followed in the root meristems of maize and French bean. Most of the primary wall components (hemicellulose, cellulose and highly methylated pectins) were laid down simultaneously along the cell plate. During young cell wall maturation within the meristem itself, significant topochemical alterations, coupled with the addition of new polysaccharides, produced complete redistribution of wall material leading to the progressive appearance of a proper middle lamella. Thus the formation of a pectic middle lamella does not precede the deposition of primary walls. It is delayed until the new partition joins to the mother cell wall.Abbreviations DMSO dimethylsulphoxide - EDTA ethylene diaminetetraacetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

2.
Two pectic fractions were extracted along the growth gradientof the mung bean hypocotyl. The first one (PF1) contained pectinssoluble in boiling water and characterized by low uronic acids/cationsratio, high esterification degree and high neutral sugars/acidicsugars ratio. The second one (PF2) contained pectins insolublein boiling water characterized by high uronic acids/cationsratio, low esterification degree, very low neutral sugar contentand a high selectivity for calcium. Water soluble pectins werepresent in all the wall area whereas the other ones were detectedmainly in the middle lamella. The PF1/PF2 ratio was high infast growing tissues but low in mature, slowly growing tissues.The development of the cell wall exchange properties along thegrowth gradient was related to the changes observed in the PF1/PF2balance. (Received July 31, 1985; Accepted January 20, 1986)  相似文献   

3.
Cell walls of a storage organ (potato tubers) showed autolysis-likeactivity. After 20 h of incubation in water at 35°C, thepurified cell walls released approximately 10% of the cell walldry weight as pectic polysaccharides containing about 40% ofthe total galacturonic acid present in the cell walls. Virtuallyno neutral polysaccharides were found in the soluble fraction.The pectic polysaccharides were heterogeneous in galacturonicacid content and had a very large molecular size. The releaseof pectic polymers was caused neither by enzymatic reactionsnor by ß-elimination, but by a chelation of Ca2+ and/orother metal ions during the cell wall isolation. Ultrastructuralobservations clearly showed that these pectic polysaccharideswere released not from the middle lamella, but from the primarycell wall adjacent to the plasma membrane. These results indicatethat nearly half of cell wall pectic polysaccharides are heldin the primary wall only by Ca2+- and/or other metal-bridgesand that these pectic polymers are not associated with the middlelamella. (Received March 20, 1989; Accepted October 3, 1989)  相似文献   

4.
Summary Calcium distribution and pectin esterification patterns in the cambial zone of poplar branches were studied with ionic microscopy and immunological tools respectively. Dynamic changes correlating with cell growth and cell differentiation were observed both on the xylem and on the phloem sides. In expanding cell walls of xylem derivatives, unesterified pectins were restricted to cell junctions and middle lamellae, occasionally accompanied by calcium ions. In contrast, in differentiating and mature phloem cells, acidic pectins and Ca2+ were present all over the walls leading to early stiffening of the polysaccharide network. Significant labelling was detected with JIM5 antibodies in some dictyosomes suggesting exocytosis of low methylated polymers towards the cell walls. At cell junctions, unesterified pectins might originate from the activity of pectinmethylesterases localized in these areas. Thus un- and deesterified pectins might be located in different cell wall domains whose distribution, varying with cell type, will confer specific extensibility to the wall matrix.Abbreviations BSA bovine serum albumin - DM degree of methylation - FITC fluorescein isothiocyanate - HM highly methylated pectins - LM low methylated pectins - PME pectin methylesterase - SIMS secondary ion mass spectrometry - TBS tris-buffered saline  相似文献   

5.
Summary. The nature of pectins (acidic, methyl-, or acetyl-esterified) in the shoot meristem of Sinapis alba was assessed by immunocytochemistry with the 2F4 monoclonal antibody in light and electron microscopy. This antibody is specific for “egg-boxes” – the polygalacturonic acid conformation induced by calcium as described in Liners et al. (Plant Physiol. 99: 1099–1104, 1992). Hardly any acidic pectin was detected in meristem walls; the pectins were largely methyl-esterified and esterified by acetyl groups and/or other esters. After in situ chemical or enzymatic de-esterification, labeling was distributed over the primary wall and the middle lamella of meristematic cells. Acidic pectin and Ca2+-cross-linked homogalacturonans were absent from the pit fields, where plasmodesmata traverse the middle lamella. The type and distribution of pectins are discussed in relation to cellular adhesion between active meristem cells. Correspondence and reprints: Unité de Recherches en Biologie Cellulaire Végétale, Département de Biologie, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles 61, 5000 Namur, Belgium.  相似文献   

6.
Distribution of pectins in cell walls of maturing anther of Allium cepa L. was investigated. The monoclonal antibodies against defined epitopes of pectin were used: JIM5 recognizing unesterified pectin and JIM7 recognizing esterified pectin. It has been found that the cell walls of all anther tissues mainly contain esterified pectins. In the somatic tissues only small amounts of unesterified pectins are present in the cell wall junctions and adjacent middle lamellae and in the cell walls of the connective tissue. Thickening of the epiderm cell walls and growth of trabeculae in endothecium are completed through deposition of esterified pectins. In the cell walls of the middle layer and tapetum, unesterified pectins have been found only prior to their disintegration. The primary wall of microsporocytes is made up mainly of esterified pectins. Unesterified pectins occur outside microsporocytes only prior to the callose isolation stage. The presence of esterified pectins has also been detected on the surface of the callose wall surrounding dividing microsporocytes. Lysis of those pectins takes place after microsporogenesis, simultaneously with the lysis of the callosic walls. Before these processes pectins are unesterified. In the sporoderm of pollen grains mainly esterified pectins occur. They have been localized in the intine and aperture. The level of unesterified pectins in the intine is markedly lower.  相似文献   

7.
Roy  S.  Conway  W. S.  Watada  A. E.  Sams  C. E.  Pooley  C. D.  Wergin  W. P. 《Protoplasma》1994,178(3-4):156-167
Summary The ripening and softening of fleshy fruits involves biochemical changes in the cell wall. These changes reduce cell wall strength and lead to cell separation and the formation of intercellular spaces. Calcium, a constituent of the cell wall, plays an important role in interacting with pectic acid polymers to form cross-bridges that influence cell wall strength. In the present study, cationic colloidal gold was used for light and electron microscopic examinations to determine whether the frequency and distribution of anionic binding sites in the walls of parenchyma cells in the apple were influenced by calcium, which was pressure infiltrated into mature fruits. Controls were designed to determine the specificity of this method for in muro labelling of the anionic sites on the pectin polymers. The results indicate that two areas of the cell wall were transformed by the calcium treatment: the primary cell walls on either side of the middle lamella and the middle lamella intersects that delineate the intercellular spaces. The data suggest that calcium ions reduce fruit softening by strengthening the cell walls, thereby preventing cell separation that results in formation of intercellular spaces.Abbreviations EDTA ethylenediaminotetraacetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

8.
The sieve elements of Pinus strobus have thick, lamellate secondary walls, which are composed predominantly of cellulose and lesser amounts of polyuronides and pectins. Eight to 10 lamellae may be present in walls 2-3 μ in thickness. Each lamella represents a plane of high cellulose density which results from intersection of two parallel sets of fibrils. Polyuronides and pectins are more or less evenly distributed in the wall, possibly with a greater concentration near the middle lamella and the inner surface. Resemblance of these walls to the so-called nacré walls is indicated, and it is possible that the two represent the same structure.  相似文献   

9.
Specific antibodies were used to localize both pectic structuresand pectinmethylesterases (PME) along the mung bean hypocotyl.Calcium ions were also detected and estimated in both young,plastic and mature, stiffened cell walls. Highly methylesterifiedpectins were present in all cell walls but decreased from thehypocotyl hook downwards. Expanded cell walls were characterizedby a high content of calcium ions and acidic pectins, althoughthe latter's cross-reactivity to JIM 5 antibodies was partlylost. Co-localization of acidic homogalacturonan and calciumions suggests the presence of egg-box structures that mightparticipate in the cell wall stiffening process which developsalong the hypocotyl. Acidic polymers could originate from theactivity of the pectinmethylesterases present in precise wallareas but direct export of acidic polygalacturonan through Golgivesicles was also observed. Copyright 1999 Annals of BotanyCompany Cell walls, immunolocalization, hypocotyl, mung bean, pectin organization, Vigna radiata.  相似文献   

10.
The primary cell wall of dicotyledonous plants can be considered as a concentrated polymer assembly, containing in particular polysaccharides among which cellulose and pectins are known to be the major components. In order to understand and control the textural quality of plant-derived foods, it is highly important to elucidate the rheological and microstructural properties of these components, individually and in mixture, in order to define their implication for structural and mechanical properties of primary plant cell wall. In this study, the rheological and microstructural properties of model systems composed of sugar-beet microfibrillated cellulose and HM pectins from various sources, with varied degrees of methylation and containing different amounts of neutral sugar side chains, were investigated. The influence of the presence of calcium and/or sodium ions and the biopolymer concentrations on the properties of the mixed systems were also studied. The characterizations of the mixed system, considered as a simplified model of primary plant cell wall, showed that whatever the structural characteristics of the pectins, the ionic conditions of the medium and the biopolymer concentrations, the gelation of the composite was mainly controlled by cellulose. Thus, the cellulose network would be the principal component governing the mechanical properties of the cell walls. However, the neutral sugar side chains of the pectins seem to play a part in the interactions with cellulose, as shown by the interesting viscoelastic properties of cellulose/apple HM pectins systems. The rigidity of cellulose/pectins composite was strongly influenced by the structural characteristics of pectins. The particular properties of primary plant cell walls would thus result from the solid viscoelastic properties of cellulose, its interactions with pectins according to their structural characteristics (implication of the neutral sugar side chains and the specific potential calcic interactions) and of the distribution of the components in separate phases.  相似文献   

11.
利用紫外光显微镜、透射电子显微镜结合免疫胶体金标记,研究了杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程中木质素与半纤维素组分(木葡聚糖和木聚糖)在细胞壁分布的动态变化。在形成层及细胞伸展区域,细胞壁具有木葡聚糖的分布,而没有木聚糖和木质素沉积,随着次生壁S1层的形成,木质素出现在细胞角隅和胞间层,木聚糖开始出现在S1层中,此时木葡聚糖则分布在初生壁和胞间层;随着次生,壁S2层及S3层的形成和加厚,木质逐逐步由细胞角隅和胞间层扩展到S1、S2和S3层,其沉积呈现出不均匀的块状或片状沉积模式,在次生壁各层形成与其木质化的同时,木聚糖逐渐分布于整个次生壁中,而木糖聚糖仍局限分布于初生壁和胞间层。结果表明,随着细胞次生壁的形成与木质化,细胞壁结构发生较大变化。细胞壁的不同区域,如细胞角隅、胞间层、初生壁和次生壁各层,具有不同的半纤维素组成,其与木质等细胞壁组分结构构成不同的细胞壁分子结构。  相似文献   

12.
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S2 and S3 layer, lignification extended to S1, S2 and S3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.  相似文献   

13.
Mutation in the Arabidopsis thaliana QUASIMODO 1 gene (QUA1), which encodes a putative glycosyltransferase, reduces cell wall pectin content and cell adhesion. Suspension-cultured calli were generated from roots of wild-type (wt) and qua1-1 A. thaliana plants. The altered cell adhesion phenotype of the qua1-1 plant was also found with its suspension-cultured calli. Cell walls of both wt and qua1-1 calli were analysed by chemical, enzymatic and immunohistochemical techniques in order to assess the role of pectic polysaccharides in the mutant phenotype. Compared with the wt, qua1-1 calli cell walls contained more arabinose (23.6 versus 21.6 mol%), rhamnose (3.1 versus 2.7 mol%), and fucose (1.4 versus 1.2 mol%) and less uronic acid (24.2 versus 27.6 mol%), and they were less methyl-esterified (DM: 22.9% versus 30.3%). When sequential pectin extraction of calli cell walls was performed, qua1-1 water-soluble and chelator-soluble extracts contained more arabinose and less uronic acid than wt. Water-soluble pectins were less methyl-esterified in qua1-1 than in wt. Chelator-soluble pectins were more acetyl-esterified in qua1-1. Differences in the cell wall chemistry of wt and mutant calli were supported by a reduction in JIM7 labelling (methyl-esterified homogalacturonan) of the whole wall in small cells and particularly by a reduced labelling with 2F4 (calcium-associated homogalacturonan) in the middle lamella at tricellular junctions of large qua1-1 cells. Differences in the oligosaccharide profile obtained after endopolygalacturonase degradation of alkali extracts from qua1-1 and wt calli indicated variations in the structure of covalently bonded homogalacturonan. About 29% more extracellular polymers rich in pectins were recovered from the calli culture medium of qua1-1 compared with wt. These results show that perturbation of QUASIMODO 1-1 gene expression in calli resulted in alterations of homogalacturonan content and cell wall location. The consequences of these structural variations are discussed with regard to plant cell adhesion.  相似文献   

14.
A general structural characterization and an investigation on the dynamics of formation of cell wall polysaccharides was performed, using plantlets stem samples from a typical gymnosperm from southern Brazil, Araucaria angustifolia, as experimental model. Microscopic examination and monosaccharide composition of plantlet segments at different heights were carried out to show the representative portions of stem cell wall development. The plantlets were divided in portions (tip, middle and base) which were submitted to sequential extractions. The extraction with water gave rise to large amounts of pectic material in the three portions and more highly substituted pectins occurred in the tip portion of the stems. Increase in alkali concentration extracted, respectively, higher amounts of xyloglucan structurally similar to those from dicotyledons. However, oligosaccharides containing galactose and fucose where found in higher amounts in base than tip portion. The changes in cell wall composition suggest that the development in gymnosperm cell walls follow the same key events as found in dicotyledon walls (type I).  相似文献   

15.
Ultrastructural changes in the cell walls of “Calville de San Sauveur” apples (Malus sylvestris Mill) and “Spadona” pear (Pyrus communis L.) fruit were followed during ripening. In apple, structural alterations in cell walls became apparent at advanced stages of softening and showed predominantly dissolution of the middle lamella. In pears softening was also associated with the dissolution of the middle lamella, and in addition a gradual disintegration of fibrillar material throughout the cell wall. In fully ripe fruit almost all of the fibrillar arrangement in the cell wall was lost. Application of enzyme solutions containing polygalacturonase and cellulase to tissue discs from firm pear fruit led to ultrastructural changes observed in naturally ripening pears. In apple polygalacturonase alone was sufficient to dissolve the middle lamella region of the cell walls, as was also found to occur in naturally ripening fruit. In both apple and pear the cell wall areas containing plasmodesmata maintained their structural integrity throughout the ripening process. At advanced stages of ripening vesicles appeared in the vicinity of plasmodesmata.  相似文献   

16.
The role of cell wall matrix polysaccharides in gibberellin-regulatedroot growth is unknown. We examined pectic polysaccharides frompea roots treated with or without gibberellin A3 (GA3) in thepresence of ancymidol, an inhibitor of gibberellin biosynthesis.Pectic polymers solubilized by CDTA (trans-l,2-cyclohexanediamine-N,N,N',N'-tetraaceticacid) at 23°C and subjected to gel permeation analysis exhibitedhigh polydispersity with a molecular mass in excess of 500 kDa.Subsequent extraction of cell walls with CDTA at 100°C solubilizedpolymers with an average mol mass of 10 to 40 kDa. Subjectingthe high molecular mass pectic polymers extracted at 23°Cto 70–100°C for 2h generated 10 to 40 kDa fragments,similar in size distribution to those solubilized directly fromcell walls by CDTA solutions at 100°C. Pectic polymers from(GA3+Anc)-treated roots were of higher average mol mass thanthose from Anc-treated roots in both the elongation zone andin the basal maturation zone. Since (GA3+Anc)-treated rootselongate more quickly than Anc-treated roots [Tanimoto (1994)Plant Cell Physiol. 35:1019], the slender, GA3-treated rootsmay produce and deposit highly integrated pectins more rapidlythan the thicker, Anc-treated roots in the elongating or elongatedcell walls. 2Present address: Horticultural Sciences Department, POB 110690IFAS, University of Florida, Gainesville, FL 32611-0690 U.S.A.  相似文献   

17.
Summary Pectic polysaccharides are major components of the plant cell wall matrix and are known to perform many important functions for the plant. In the course of our studies on the putative role of pectic polysaccharides in the control of cell elongation, we have examined the distribution of polygalacturonans in the epidermal and cortical parenchyma cell walls of flax seedling hypocotyls. Pectic components have been detected with (1) the nickel (Ni2+) staining method to visualize polygalacturonates, (2) monoclonal antibodies specific to low (JIM5) and highly methylesterified (JIM7) pectins and (3) a combination of subtractive treatment and PATAg (periodic acid-thiocarbohydrazide-silver proteinate) staining. In parallel, calcium (Ca2+) distribution has been imaged using SIMS microscopy (secondary ion mass spectrometry) on cryo-prepared samples and TEM (transmission electron microscopy) after precipitation of calcium with potassium pyroantimonate. Our results show that, at the tissular level, polygalacturonans are mainly located in the epidermal cell walls, as revealed by the Ni2+ staining and immunofluorescence microscopy with JIM5 and JIM7 antibodies. In parallel, Ca2+ distribution points to a higher content of this cation in the epidermal walls compared to cortical parenchyma walls. At the ultrastructural level, immunogold labeling with JIM5 and JIM7 antibodies shows a differential distribution of pectic polysaccharides within cell walls of both tissues. The acidic polygalacturonans (recognized by JIM5) held through calcium bridges are mainly found in the outer part of the external wall of epidermal cells. In contrast, the labeling of methylesterified pectins with JIM7 is slightly higher in the inner part than in the outer part of the wall. In the cortical parenchyma cells, acidic pectins are restricted to the cell junctions and the wall areas in contact with the air-spaces, whereas methylesterified pectins are evenly distributed all over the wall. In addition, the pyroantimonate precipitation method reveals a clear difference in the Ca2+ distribution in the epidermal wall, suggesting that this cation is more tightly bound to acidic pectins in the outer part than in the inner part of that wall. Our findings show that the distribution of pectic polysaccharides and the nature of their linkages differ not only between tissues, but also within a single wall of a given cell in flax hypocotyls. The differential distribution of pectins and Ca2+ in the external epidermal wall suggests a specific control of the demethylation of pectins and a central role for Ca2+ in this regulation.Abbreviations Cdta diamino-1,2-cyclohexane tetra-acetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate - PGA polygalacturonic acid - PME pectin methylesterase - RG I rhamnogalacturonan I - SIMS secondary ion mass spectrometry - TEM transmission electron microscopy  相似文献   

18.
When leaf disks from haploid plants of Nicotiana plumbaginifolia Viv. were transformed with T-DNA and cultured on shoot-inducing medium, nonorganogenic callus. designated nolac (for non-organogenic callus with loosely attached cells), appeared on approximately 7% of leaf disks. In contrast, normal callus was generated on T-DNA-transformed leaf disks from diploid plants and on non-transformed leaf disks from haploid and diploid plants. Transmission electron microscopy revealed that the middle lamellae and the cell walls of one line of mutant callus (nolac-H14) were barely stained by ruthenium red. even after demethylesterification with NaOH, whereas the entire cell wall and the middle lamella were strongly stained in normal callus. In cultures of nolac-H14 callus, the level of sugar components of pectic polysaccharides in the hemicellulose fraction was reduced and that in the culture medium was elevated, as compared with cultures of normal callus. These results indicate that pectic polysaccharides are not retained in the cell walls and middle lamellae of nolac-H14 callus. In nolac-H14, the ratio of arabinose to galactose was low in the pectic polysaccharides purified from all cell wall fractions and from the medium, in particular, in the hemicellulose fractions. The low levels of arabinofuranosyl (T-Araf, 5-Araf, 2,5-Araf, and 3,5-Araf) residues in the pectic polysaccharides of the hemicellulosic fraction of nolac-H,14 indicated that no neutral-sugar side chains, composed mainly of linear arabinan. were present in nolac-H14. Arabinose-rich pectins. which are strongly associated with cellulose-hemicellulose complexes, might play an important role in intercellular attachment in the architecture of the cell wall.  相似文献   

19.
The distribution of hemicelluloses and pectins in bamboo internodes was studied immunocytochemistrically at various stages of development. The ultra-structures of bamboo cell walls have been reported previously at various stages. The internodes were identically classified into three developmental phases: primary wall stage (phase I), unlignified secondary wall stage (phase II) and lignified wall stage (phase III), using the same bamboo culm. (1-->3, 1-->4)-Beta-glucans were distributed in nearly all tissues in an actively elongating stage. Limited amounts of beta-glucans were deposited in primary walls and the middle lamellae, but were limited to the phloem in secondary walls. This suggests that the function of beta-glucans might be different in phloem vis-à-vis other tissues. Highly-substituted xylans were located in nearly all tissues of early phase I, but had disappeared in all tissues immediately prior to lignification. In contrast, low-branched xylan epitopes were present only in the protoxylem in phase I, but were present in all tissues immediately prior to lignification in phase II. In phase III, the epitopes were densely localized in lignified walls, suggesting that the substitution of xylans is closely related to maturation. Methyl-esterified (but not unesterified) pectins were present in all tissues of early phase I. Just before and after lignification, both types of pectins were concentrated in the phloem and protoxylem. Xyloglucans were largely distributed in the phloem and in lignified tissues, suggesting that they might be closely correlated with maturation. This represents the first account of the distribution of hemicelluloses and pectins at the tissue and ultrastructural level in bamboo internodes at various stages of development.  相似文献   

20.
Six monoclonal antibodies (mAbs) were used to map the distribution of pectic epitopes in the cell walls of potato ( Solanum tuberosum L. cvs Kardal and Karnico) tuber tissue in both light and electron microscopes. Unesterified (mAb JIM 5 epitope) and methyl-esterified (mAb JIM 7 epitope) pectins were abundant and equally distributed in all parenchymal and vascular cell walls. Homogalacturonans (HGAs) involved in Ca2+-cross-linking (mAb 2F4 epitope) were localised to the middle lamella and abundant at cell corners. The tuber cortex was densely labelled, but parenchymal cell walls in the perimedullary region contained few epitopes of calcium pectate except at corners and pit fields. In contrast, pectic side-chains were not detectable in the middle lamella of all parenchymal cell walls, except in the cortex where mAb LM6 (arabinan epitope) labelled the entire wall. The galactan epitope (mAb LM5) was localised to a zone very close to the plasmalemma in cortical cell walls and was also less abundant at pit fields and in vascular cell walls. MAb CCRC-M2 (rhamnogalacturonan I epitope) did not cross-react. Our results show that the cell walls of potato tubers are not homogeneous structures and that the pectic composition of the walls is spatially regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号