首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Ecosystem restoration is the practice of assisting recovery in degraded ecological communities. The aims of restoration are typically broad, involving the reinstatement of composition, structure, function, and resilience to disturbances. One common restoration tactic in degraded urban systems is to control invasive species, relying on passive restoration for further ecosystem-level recovery. Here, we test whether this is an effective restoration strategy in Garry oak savanna, a highly threatened and ecologically important community in the North American Pacific Northwest. In urban savanna patches surrounding Victoria, British Columbia, community members have been actively removing aggressive invasive exotic species for over a decade. Based on vegetation surveys from 2007, we tested ecosystem changes in structure, composition, and resilience (i.e., functional redundancy and response diversity) across 10 years of varied management levels. We expected higher levels of invasive species management would correspond with improvements to these ecosystem metrics. However, management explained little of the patterns found over the 10-year-period. Woody encroachment was a complicated process of native and exotic invasion, while resilience and compositional changes were most closely tied with landscape connectivity. Thus, though invasive species management may prevent further degradation, active restoration strategies after removal are likely required for recovery of the ecosystem.  相似文献   

2.
  总被引:1,自引:0,他引:1  
  相似文献   

3.
Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.  相似文献   

4.
    
Bird communities in Tropical forests have high rate of rare species, but only recently some studies suggested their disproportional role for the overall functional diversity. We investigated data from bird communities monitored annually using point counts over ten years in Iguassu National Park, that is a large and protected area in the southern portion of the Atlantic Forest in Brazil. We aimed (1) to determine the rare and dominant species in the community based on their abundance over time; (2) to evaluate the impact of each class of rarity on the overall functional volume of the community; (3) to investigate the pattern of occupancy of the trait space filled by each dominance class, and (4) to assess the disparity in functional trait composition between classes of rarity. We defined dominant, intermediate, and rare species in communities using cluster analysis and data of relative abundance of species in five sections of 1-km in the forest interior. The number of clusters was defined in accordance with the silhouette criterion measures of cohesion and separation that range from −1 to 1, with values > 0.5 indicating high-quality clusters. Among total 138 bird species recorded, 107 were rare, 26 intermediates, and 5 dominants. Our data corroborate a functional disproportional importance of rare bird species in the community considering the functional space (FRic), but functional dispersion (FDis) was not significantly different between the rare and intermediate species. In fact, there is a large overlap of the functional volume occupied by rare in relation to dominant/intermediate species. The niche space occupied by rare species covers most of the space occupied by intermediate and dominant species. The low representativeness of functional turnover indicates that few functions are unique to the classes of higher dominance. Our data suggest the importance of rare bird species to the overall functional diversity but also highlights the potential use of dominants/intermediates species as indicators to select important forests areas for conservation, as certain forest fragments. Through these most abundant species it would be possible to assess which functions are heaviest in abundance, becoming core functions, in the context of each independent forest fragment.  相似文献   

5.
    
Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.  相似文献   

6.
    
The performance of several indices of benthic functioning, based on the traits of estuarine macro-invertebrates, was tested in the lower Mondego estuary (Portugal), whose two arms exhibit different disturbance levels related to hydromorphology. The results showed that some indices responded clearly to this type of disturbance and others not so well. We argue that the community-weighted mean trait values (CWM) in combination with the newly developed SR-FRED index provided the best overall picture of how the benthic communities might have been affected by hydromorphological disturbance. This study also showed that certain indices should be used with caution when dealing with communities with few and dominant species, such as in estuarine environments.  相似文献   

7.
This study tested an hypothesis concerning patterns in species abundance in ecological communities. Why do the majority of species occur in low abundance, with just a few making up the bulk of the biomass? We propose that many of the minor species are analogues of the dominants in terms of the ecosystem functions they perform, but differ in terms of their capabilities to respond to environmental stresses and disturbance. They thereby confer resilience on the community with respect to ecosystem function. Under changing conditions, ecosystem function is maintained when dominants decline or are lost because functionally equivalent minor species are able to substitute for them. We have tested this hypothesis with respect to ecosystem functions relating to global change. In particular, we identified five plant functional attributes—height, biomass, specific leaf area, longevity, and leaf litter quality—that determine carbon and water fluxes. We assigned values for these functional attributes to each of the graminoid species in a lightly grazed site and in a heavily grazed site in an Australian rangeland. Our resilience proposition was cast in the form of three specific hypotheses in relation to expected similarities and dissimilarities between dominant and minor species, within and between sites. Functional similarity—or ecological distance—was determined as the euclidean distance between species in functional attribute space. The analyses provide evidence in support of the resilience hypothesis. Specifically, within the lightly grazed community, dominant species were functionally more dissimilar to one another, and functionally similar species more widely separated in abundance rank, than would be expected on the basis of average ecological distances in the community. Between communities, depending on the test used, two of three, or three of four minor species in the lightly grazed community that were predicted to increase in the heavily grazed community did in fact do so. Although there has been emphasis on the importance of functional diversity in supporting the flow of ecosystem goods and services, the evidence from this study indicates that functional similarity (between dominant and minor species, and among minor species) may be equally important in ensuring persistence (resilience) of ecosystem function under changing environmental conditions.  相似文献   

8.
1. Valuable insights into mechanisms of community responses to environmental change can be gained by analysing in tandem the variation in functional and taxonomic composition along environmental gradients. 2. We assess the changes in species and functional trait composition (i.e. dominant traits and functional diversity) of diverse bee communities in contrasting fire-driven systems in two climatic regions: Mediterranean (scrub habitats in Israel) and temperate (chestnut forests in southern Switzerland). 3. In both climatic regions, there were shifts in species diversity and composition related to post-fire age. In the temperate region, functional composition responded markedly to fire; however, in the Mediterranean, the taxonomic response to fire was not matched by functional replacement. 4. These results suggest that greater functional stability to fire in the Mediterranean is achieved by replacement of functionally similar species (i.e. functional redundancy) which dominate under different environmental conditions in the heterogeneous landscapes of the region. In contrast, the greater functional response in the temperate region was attributed to a more rapid post-fire vegetation recovery and shorter time-window when favourable habitat was available relative to the Mediterranean. 5. Bee traits can be used to predict the functional responses of bee communities to environmental changes in habitats of conservation importance in different regions with distinct disturbance regimes. However, predictions cannot be generalized from one climatic region to another where distinct habitat configurations occur.  相似文献   

9.
10.
Abstract Empirical estimates of the function and resilience of communities under different management regimes can provide valuable information for sustainable natural resource management, but such estimates are scarce to date. We quantified the functional richness and relative resilience of bird communities inhabiting five regions in southeastern Australia that represented different management regimes. First, we show that functional richness and relative resilience were reduced at species-poor sites in all regions. Second, we show that bird communities in agricultural regions had fewer body mass groups and fewer functional groups than expected by chance. This suggests that both the function and the resilience of bird communities in agricultural regions were reduced. The likely mechanisms for the observed loss of function and relative resilience are: (1) the simplification of landscape texture resulting in selective extinction of certain body mass groups; and (2) the selective extinction of certain functional groups that are particularly sensitive to intensive land use. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
In an experiment on artificial plant communities, the effects of three components of plant diversity—plant species diversity, plant functional group diversity and plant functional diversity—on community productivity and soil water content were compared. We found that simple regression analysis showed a positive diversity effect on ecosystem processes (productivity and soil water content). However, when three components of diversity were included in the multiple regression analyses, the results showed that functional group diversity and functional diversity had more important effects on productivity and resource use efficiency. These results suggested that, compared with species number, functional differences among species and the range of functional traits carried by plants are the basis of biodiversity effects on ecosystem functioning. These diversity effects of increasing functional group diversity or functional diversity were likely because species differing greatly in size, life form, phenology and capacity to capture and use resources efficiently in diverse communities realize complementary resource use in temporal, spatial, and biological ways.  相似文献   

13.
14.
    
If climate change affects pollinator‐dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature‐induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change.  相似文献   

15.
    
Background and AimsAridity is increasing in many regions of the world, but microclimatic conditions may buffer plant communities from the direct effects of decreased precipitation, creating habitat islands. However, reduced precipitation can also impact these communities indirectly by decreasing the suitability of the surrounding habitat, thus limiting incoming propagules and increasing the chances of population decline and species loss. We test whether decreased precipitation results in loss of species and functional diversity within habitat islands, evaluating in particular whether declines in species diversity and abundance are less likely to result in loss of functional diversity if species/individual loss is stochastic (i.e. independent of species/individual traits) and communities/populations are functionally redundant.MethodsLomas communities are discrete plant communities embedded in the Atacama Desert, maintained by the microclimatic conditions created by fog. We recorded species and functional diversity in six Lomas communities along a 500 km long precipitation gradient in northern Chile. Functional traits were measured in 20 individuals per species, in those species that accounted for approx. 75 % of the abundance at each site. We calculated functional diversity and functional redundancy of the community, and intraspecific functional variation.Key ResultsDecreased precipitation was associated with lower species diversity and lower species abundances. However, no traits or functional strategies increased or decreased consistently with precipitation, suggesting stochastic species/individual loss. Species with stress-tolerant strategies were predominant in all sites. Although species diversity decreased with decreasing precipitation, functional diversity remained unchanged. Lower functional redundancy in the drier sites suggests that mainly functionally redundant species were lost. Likewise, intraspecific functional variation was similar among communities, despite the lower species abundance in drier sites.ConclusionsDecreased precipitation can impact habitat island communities indirectly by decreasing the suitability of the surrounding habitat. Our results support the idea that a stochastic loss of species/individuals from functionally redundant communities and populations does not result in loss of functional diversity.  相似文献   

16.
    
Traditionally, biogeography has described the distribution of species. But as plant functional traits and functional diversity underpin ecosystem dynamics, understanding drivers of functional diversity at biogeographical scales is essential to understand spatial variation in ecosystem characteristics, particularly in light of ongoing environmental changes. Here we investigate geographic patterns of functional diversity and -traits of the Norwegian flora. We explore whether climate, land-use or glacial history are important drivers of functional diversity. We combine species occurrence records and assemblage-means of functional traits to assess the spatial distribution of functional traits and -diversity of native vascular plants in Norway in a 20 × 20 km grid. We use multiple-model inference to identify which environmental factors contribute the most in explaining the spatial patterns of trait distributions and functional diversity. Additionally, we use the constructed models to predict potential changes in distributions of traits and functional diversity given different climate change scenarios.  相似文献   

17.
    
Understanding factors affecting the functional diversity of ecological communities is an important goal for ecologists and conservationists. Previous work has largely been conducted at the community level; however, recent studies have highlighted the critical importance of considering intraspecific functional diversity (i.e. the functional diversity of phenotypic traits among conspecifics). Further, a major limitation of existing literature on this topic is the lack of empirical studies examining functional diversity of behavioural phenotypes—including animal personalities. This is a major shortcoming because personality traits can affect the fitness of individuals, and the composition of personalities in a population can have important ecological consequences. Our study aims to contribute to filling this knowledge gap by investigating factors affecting the functional diversity of personality traits in wild animal populations. Specifically, we predicted that the richness, divergence and evenness associated with personality traits would be impacted by key components of forest structure and would vary between contrasting forest types. To achieve our objective we conducted a fully replicated large-scale field experiment over a 4 year period using small mammal populations as a model system. We found that greater heterogeneity in the cover of shrubs, coarse woody debris and canopy cover was associated with a greater richness, lower divergence and lower evenness in personality traits. Greater population density was associated with greater functional richness and lower functional divergence and evenness of personality traits. To maintain a behaviourally diverse population and its associated functions, managers may promote heterogeneity in vegetation and increased population density, which we found to be the most important determinants driving functional diversity of personality traits.  相似文献   

18.
19.
随着全球城市化的发展,城区面积不断扩大,城市周围自然栖息地受到挤压,面积减小并且变得破碎化.城市化进程会对生态系统功能产生重大影响,很可能导致鸟类被迫适应城市生境并出现功能性状的同质化.我们对杭州三种不同城市化梯度的样地进行鸟类调查,其中包括15个市区样地、15个近郊样地和15个远郊样地.计算不同城市化程度下不同区域的鸟类物种丰富度和功能多样性,并对比市区、近郊和远郊样地鸟类功能性状的差异,探究哪些功能性状会影响鸟类适应城市化生境.研究发现,远郊样地的鸟类物种丰富度水平最高,但是近郊样地拥有更高的鸟类功能丰富度.虽然市区的物种丰富度和功能多样性低于近郊和远郊样地,但市区的物种组成占总体比例也较高,较高程度的城市绿化支撑了一定程度的鸟类物种多样性水平.市区、近郊和远郊区域鸟类在巢址选择、集群情况和食性方面差异较大.相对于近郊和远郊区域鸟类,市区鸟类更倾向于选择在树冠筑巢,而不是地面或灌丛,并且倾向于形成更大的集群.在食性方面,市区鸟类取食花果占比相对较高,取食无脊椎动物相对占比较低.我们没有发现市区、近郊和远郊区域样地鸟类在体征上存在显著差异.  相似文献   

20.
植物群落的演替与稳定性   总被引:17,自引:0,他引:17  
演替是生物界最常见的自然现象之一。早在 2 0世纪2 0年代 ,Clements就开始了系统的演替研究 ,他提出的演替经典模式对生态学的影响一直延续至今。数十年来 ,尽管生态学家相继提出了各种各样的演替理论或假说[1,15,16,2 4 ,2 5] ,但由于地域的限制和生态学家有限的经验 ,迄今为止还没有一个统一的演替理论或模式 ,甚至连演替一词的涵义各说不一[16] 。近年来 ,邬建国等[16] 学者对百年来各种演替理论和假说作了较全面的总结和评述 ,他把尺度 等级系统理论视为现代生态学范式 ,并认为是演替研究现在和将来的发展方向。遗憾的是 ,有关…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号