首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The social brain hypothesis proposes that haplorhine primates have evolved relatively large brains for their body size primarily as an adaptation for living in complex social groups. Studies that support this hypothesis have shown a strong relationship between relative brain size and group size in these taxa. Recent reports suggest that this pattern is unique to haplorhine primates; many nonprimate taxa do not show a relationship between group size and relative brain size. Rather, pairbonded social monogamy appears to be a better predictor of a large relative brain size in many nonprimate taxa. It has been suggested that haplorhine primates may have expanded the pairbonded relationship beyond simple dyads towards the evolution of complex social groups. We examined the relationship between group size, pairbonding, and relative brain size in a sample of 19 lemurs; strepsirrhine primates that last share a common ancestor with monkeys and apes approximately 75 Ma. First, we evaluated the social brain hypothesis, which predicts that species with larger social groups will have relatively larger brains. Secondly, we tested the pairbonded hypothesis, which predicts that species with a pairbonded social organization will have relatively larger brains than non-pairbonded species. We found no relationship between group size or pairbonding and relative brain size in lemurs. We conducted two further analyses to test for possible relationships between two nonsocial variables, activity pattern and diet, and relative brain size. Both diet and activity pattern are significantly associated with relative brain size in our sample. Specifically, frugivorous species have relatively larger brains than folivorous species, and cathemeral species have relatively larger brains than diurnal, but not nocturnal species. These findings highlight meaningful differences between Malagasy strepsirrhines and haplorhines, and between Malagasy strepsirrhines and nonprimate taxa, regarding the social and ecological factors associated with increases in relative brain size. The results suggest that factors such as foraging complexity and flexibility of activity patterns may have driven selection for increases in brain size in lemurs.  相似文献   

2.
Migratory bird species have smaller brains than non-migratory species. The behavioural flexibility/migratory precursor hypothesis suggests that sedentary birds have larger brains to allow the behavioural flexibility required in a seasonally variable habitat. The energy trade-off hypothesis proposes that brains are heavy, energetically expensive and therefore, incompatible with migration. Here, we compared relative brain, neocortex and hippocampus volume between migratory and sedentary bats at the species-level and using phylogenetically independent contrasts. We found that migratory bats had relatively smaller brains and neocortices than sedentary species. Our results support the energy trade-off hypothesis because bats do not exhibit the same degree of flexibility in diet selection as sedentary birds. Our results also suggest that bat brain size differences are subtler than those found in birds, perhaps owing to bats'' shorter migration distances. Conversely, we found no difference in relative hippocampus volume between migratory and sedentary species, underscoring our limited understanding of the role of the hippocampus in bats.  相似文献   

3.
The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis) is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20) add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative) is related most closely to neocortex volume, but male sociality (which is more competitive and combative) is more closely related to subcortical units (notably those associated with emotional responses). Thus different brain units have responded to different selection pressures.  相似文献   

4.
The brain’s main function is to organise the physiological and behavioural responses to environmental and social challenges in order to keep the organism alive. Here, we studied the effects that gregariousness (as a measurement of sociality), dietary habits, gestation length and sex have on brain size of extant ungulates. The analysis controlled for the effects of phylogeny and for random variability implicit in the data set. We tested the following groups of hypotheses: (1) Social brain hypothesis—gregarious species are more likely to have larger brains than non-gregarious species because the former are subjected to demanding and complex social interactions; (2) Ecological hypothesis—dietary habits impose challenging cognitive tasks associated with finding and manipulating food (foraging strategy); (3) Developmental hypotheses (a) energy strategy: selection for larger brains operates, primarily, on maternal metabolic turnover (i.e. gestation length) in relation to food quality because the majority of the brain’s growth takes place in utero, and finally (b) sex hypothesis: females are expected to have larger brains than males, relative to body size, because of the differential growth rates of the soma and brain between the sexes. We found that, after adjusting for body mass, gregariousness and gestation length explained most of the variation in brain mass across the ungulate species studied. Larger species had larger brains; gregarious species and those with longer gestation lengths, relative to body mass, had larger brains than non-gregarious species and those with shorter gestation lengths. The effect of diet was negligible and subrogated by gestation length, and sex had no significant effect on brain size. The ultimate cause that could have triggered the co-evolution between gestation length and brain size remains unclear.  相似文献   

5.
Seasonal changes in energy supply impose energetic constraints that affect many physiological and behavioral characteristics of organisms. As brains are costly, we predict brain size to be relatively small in species that experience a higher degree of seasonality (expensive brain framework). Alternatively, it has been argued that larger brains give animals the behavioral flexibility to buffer the effects of habitat seasonality (cognitive buffer hypothesis). Here, we test these two hypotheses in a comparative study on strepsirrhine primates (African lorises and Malagasy lemurs) that experience widely varying degrees of seasonality. We found that experienced seasonality is negatively correlated with relative brain size in both groups, controlling for the effect of phylogenetic relationships and possible confounding variables such as the extent of folivory. However, relatively larger-brained lemur species tend to experience less variation in their dietary intake than indicated by the seasonality of their habitat. In conclusion, we found clear support for the hypothesis that seasonality restricts brain size in strepsirrhines as predicted by the expensive brain framework and weak support for the cognitive buffer hypothesis in lemurs.  相似文献   

6.
The social brain hypothesis, an explanation for the unusually large brains of primates, posits that the size of social group typical of a species is directly related to the volume of its neocortex. To test whether this hypothesis also applies at the within-species level, we applied the Cavalieri method of stereology in conjunction with point counting on magnetic resonance images to determine the volume of prefrontal cortex (PFC) subfields, including dorsal and orbital regions. Path analysis in a sample of 40 healthy adult humans revealed a significant linear relationship between orbital (but not dorsal) PFC volume and the size of subjects' social networks that was mediated by individual intentionality (mentalizing) competences. The results support the social brain hypothesis by indicating a relationship between PFC volume and social network size that applies within species, and, more importantly, indicates that the relationship is mediated by social cognitive skills.  相似文献   

7.
Sociality is primarily a coordination problem. However, the social (or communication) complexity hypothesis suggests that the kinds of information that can be acquired and processed may limit the size and/or complexity of social groups that a species can maintain. We use an agent-based model to test the hypothesis that the complexity of information processed influences the computational demands involved. We show that successive increases in the kinds of information processed allow organisms to break through the glass ceilings that otherwise limit the size of social groups: larger groups can only be achieved at the cost of more sophisticated kinds of information processing that are disadvantageous when optimal group size is small. These results simultaneously support both the social brain and the social complexity hypotheses.  相似文献   

8.
The mushroom body (MB) is an area of the insect brain involved in learning, memory, and sensory integration. Here, we used the sweat bee Megalopta genalis (Halictidae) to test for differences between queens and workers in the volume of the MB calyces. We used confocal microscopy to measure the volume of the whole brain, MB calyces, optic lobes, and antennal lobes of queens and workers. Queens had larger brains, larger MB calyces, and a larger MB calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain development. This could result from social interactions leading to smaller worker MBs, or larger queen MBs. It could also result from other factors, such as differences in age or sensory experience. To test these explanations, we next compared queens and workers to other groups. We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new observation nests, and bees initiating new natural nests collected from the field to queens and workers. Queens did not differ from these other groups. We suggest that the effects of queen dominance over workers, rather than differences in age, experience, or reproductive status, are responsible for the queen–worker differences we observed. Worker MB development may be affected by queen aggression directly and/or manipulation of larval nutrition, which is provisioned by the queen. We found no consistent differences in the size of antennal lobes or optic lobes associated with differences in age, experience, reproductive status, or social caste.  相似文献   

9.
One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large‐ and small‐brained individuals. Instead, we found that large‐brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system.  相似文献   

10.
The brain is an energetically costly organ that consumes a disproportionate amount of resources. Species with larger brains relative to their body size have slower life histories, with reduced output per reproductive event and delayed development times that can be offset by increasing behavioral flexibility. The “cognitive buffer” hypothesis maintains that large brain size decreases extrinsic mortality due to greater behavioral flexibility, leading to a longer lifespan. Alternatively, slow life histories, and long lifespan can be a pre-adaptation for the evolution of larger brains. Here, we use phylogenetic path analysis to contrast different evolutionary scenarios and disentangle direct and indirect relationships between brain size, body size, life history, and longevity across 339 altricial and precocial bird species. Our results support both a direct causal link between brain size and lifespan, and an indirect effect via other life history traits. These results indicate that large brain size engenders longer life, as proposed by the “cognitive buffer” hypothesis.  相似文献   

11.
Migratory birds appear to have relatively smaller brain size compared to sedentary species. It has been hypothesized that initial differences in brain size underlying behavioural flexibility drove the evolution of migratory behaviour; birds with relatively large brains evolved sedentary habits and those with relatively small brains evolved migratory behaviour (migratory precursor hypothesis). Alternative hypotheses suggest that changes in brain size might follow different behavioural strategies and that sedentary species might have evolved larger brains because of differences in selection pressures on brain size in migratory and nonmigratory species. Here we present the first evidence arguing against the migratory precursor hypothesis. We compared relative brain volume of three subspecies of the white-crowned sparrow: sedentary Zonotrichia leucophrys nuttalli and migratory Z. l. gambelii and Z. l. oriantha. Within the five subspecies of the white-crowned sparrow, only Z. l. nuttalli is strictly sedentary. The sedentary behaviour of Z. l. nuttalli is probably a derived trait, because Z. l. nuttalli appears to be the most recent subspecies and because all species ancestral to Zonotrichia as well as all older subspecies of Z. leucophrys are migratory. Compared to migratory Z. l. gambelii and Z. l. oriantha, we found that sedentary Z. l. nuttalli had a significantly larger relative brain volume, suggesting that the larger brain of Z. l. nuttalli evolved after a switch to sedentary behaviour. Thus, in this group, brain size does not appear to be a precursor to the evolution of migratory or sedentary behaviour but rather an evolutionary consequence of a change in migratory strategy.  相似文献   

12.
Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.  相似文献   

13.
The social brain hypothesis argues that large brains have arisen over evolutionary time as a response to the social and ecological conflicts inherent in group living. We test predictions arising from the hypothesis using comparative data from birds and four mammalian orders (Carnivora, Artiodactyla, Chiroptera and Primates) and show that, across all non-primate taxa, relative brain size is principally related to pairbonding, but with enduring stable relationships in primates. We argue that this reflects the cognitive demands of the behavioural coordination and synchrony that is necessary to maintain stable pairbonded relationships. However, primates differ from the other taxa in that they also exhibit a strong effect of group size on brain size. We use data from two behavioural indices of social intensity (enduring bonds between group members and time devoted to social activities) to show that primate relationships differ significantly from those of other taxa. We suggest that, among vertebrates in general, pairbonding represents a qualitative shift from loose aggregations of individuals to complex negotiated relationships, and that these bonded relationships have been generalized to all social partners in only a few taxa (such as anthropoid primates).  相似文献   

14.
Evidence is accumulating that species traits can spur their evolutionary diversification by influencing niche shifts, range expansions, and extinction risk. Previous work has shown that larger brains (relative to body size) facilitate niche shifts and range expansions by enhancing behavioral plasticity but whether larger brains also promote evolutionary diversification is currently backed by insufficient evidence. We addressed this gap by combining a brain size dataset for >1900 avian species worldwide with estimates of diversification rates based on two conceptually different phylogenetic‐based approaches. We found consistent evidence that lineages with larger brains (relative to body size) have diversified faster than lineages with relatively smaller brains. The best supported trait‐dependent model suggests that brain size primarily affects diversification rates by increasing speciation rather than decreasing extinction rates. In addition, we found that the effect of relatively brain size on species‐level diversification rate is additive to the effect of other intrinsic and extrinsic factors. Altogether, our results highlight the importance of brain size as an important factor in evolution and reinforce the view that intrinsic features of species have the potential to influence the pace of evolution.  相似文献   

15.
Studies have shown that after controlling for the effects of body size on brain size, the brains of adult humans, rhesus monkeys, and chimpanzees differ in relative size, where males have a greater volume of cerebral tissue than females. We assess whether head circumference sexual dimorphism is present during early development by evaluating sex differences in relative head circumference in living fetuses and infants within the first year of life. Head circumference is used as a proxy for brain size in the fetus and infant. Femur length is used as a proxy for body length in the fetus. Ultrasonography was used to obtain fetal measures, and anthropometry was used to obtain postnatal measures in humans, rhesus monkeys, baboons, and common marmosets. We show that statistically significant but low levels of head circumference sexual dimorphism are present in humans, rhesus monkeys, and baboons in early life. On average, males have head circumferences about 2% larger than females of comparable femur/body length in humans, rhesus monkeys, and baboons. No evidence for head circumference sexual dimorphism in the common marmoset was found. Dimorphism was present across all body size ranges. We suggest that head circumference sexual dimorphism emerges largely postnatally and increases throughout maturation, particularly in humans who reach adult dimorphism values greater than the monkeys. We suggest that brain dimorphism is not likely to impose an additional energetic burden to the gestating or lactating mother. Finally, some of the problems with ascribing functional significance to brain size sexual dimorphism are discussed, and the energetic implications for brain size sexual dimorphism in infancy are assessed.  相似文献   

16.
Amiel JJ  Tingley R  Shine R 《PloS one》2011,6(4):e18277
Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success) was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility), or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability).  相似文献   

17.
Brain size relative to body size is smaller in migratory than in nonmigratory birds. Two mutually nonexclusive hypotheses had been proposed to explain this association. On the one hand, the “energetic trade‐off hypothesis” claims that migratory species were selected to have smaller brains because of the interplay between neural tissue volume and migratory flight. On the other hand, the “behavioral flexibility hypothesis” argues that resident species are selected to have higher cognitive capacities, and therefore larger brains, to enable survival in harsh winters, or to deal with environmental seasonality. Here, I test the validity and setting of these two hypotheses using 1466 globally distributed bird species. First, I show that the negative association between migration distance and relative brain size is very robust across species and phylogeny. Second, I provide strong support for the energetic trade‐off hypothesis, by showing the validity of the trade‐off among long‐distance migratory species alone. Third, using resident and short‐distance migratory species, I demonstrate that environmental harshness is associated with enlarged relative brain size, therefore arguably better cognition. My study provides the strongest comparative support to date for both the energetic trade‐off and the behavioral flexibility hypotheses, and highlights that both mechanisms contribute to brain size evolution, but on different ends of the migratory spectrum.  相似文献   

18.
Heritable genetic variation in relative brain size can underlie the relationship between brain performance and the relative size of the brain. We used bidirectional artificial selection to study the consequences of genetic variation in relative brain size on brain morphology, cognition and longevity in Nasonia vitripennis parasitoid wasps. Our results show a robust change in relative brain size after 26 generations of selection and six generations of relaxation. Total average neuropil volume of the brain was 16% larger in wasps selected for relatively large brains than in wasps selected for relatively small brains, whereas the body length of the large‐brained wasps was smaller. Furthermore, the relative volume of the antennal lobes was larger in wasps with relatively large brains. Relative brain size did not influence olfactory memory retention, whereas wasps that were selected for larger relative brain size had a shorter longevity, which was even further reduced after a learning experience. These effects of genetic variation on neuropil composition and memory retention are different from previously described effects of phenotypic plasticity in absolute brain size. In conclusion, having relatively large brains may be costly for N. vitripennis, whereas no cognitive benefits were recorded.  相似文献   

19.
Conflicting theories have been proposed to explain variation in relative brain size across the animal kingdom. Ecological theories argue that the cognitive demands of seasonal or unpredictable environments have selected for increases in relative brain size, whereas the ‘social brain hypothesis’ argues that social complexity is the primary driver of brain size evolution. Here, we use a comparative approach to test the relative importance of ecology (diet, foraging niche and migration), sociality (social bond, cooperative breeding and territoriality) and developmental mode in shaping brain size across 1886 bird species. Across all birds, we find a highly significant effect of developmental mode and foraging niche on brain size, suggesting that developmental constraints and selection for complex motor skills whilst foraging generally imposes important selection on brain size in birds. We also find effects of social bonding and territoriality on brain size, but the direction of these effects do not support the social brain hypothesis. At the same time, we find extensive heterogeneity among major avian clades in the relative importance of different variables, implying that the significance of particular ecological and social factors for driving brain size evolution is often clade- and context-specific. Overall, our results reveal the important and complex ways in which ecological and social selection pressures and developmental constraints shape brain size evolution across birds.  相似文献   

20.
Compared to most other mammals and birds, anthropoid primates have unusually complex societies characterised by bonded social groups. Among primates, this effect is encapsulated in the social brain hypothesis: the robust correlation between various indices of social complexity (social group size, grooming clique size, tactical behaviour, coalition formation) and brain size. Hitherto, this has always been interpreted as a simple, unitary relationship. Using data for five different indices of brain volume from four independent brain databases, we show that the distribution of group size plotted against brain size is best described as a set of four distinct, very narrowly defined grades which are unrelated to phylogeny. The allocation of genera to these grades is highly consistent across the different data sets and brain indices. We show that these grades correspond to the progressive evolution of bonded social groups. In addition, we show, for those species that live in multilevel social systems, that the typical sizes of the different grouping levels in each case coincide with different grades. This suggests that the grades correspond to demographic attractors that are especially stable. Using five different cognitive indices, we show that the grades correlate with increasing social cognitive skills, suggesting that the cognitive demands of managing group cohesion increase progressively across grades. We argue that the grades themselves represent glass ceilings on animals' capacity to maintain social and spatial coherence during foraging and that, in order to evolve more highly bonded groups, species have to be able to invest in costly forms of cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号