首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kompass im Kopf     
Ant compass – how desert ants learn to navigate Successful spatial orientation is a daily challenge for many animals. Cataglyphis desert ants are famous for their navigational performances. They return to the nest after extensive foraging trips without any problems. How do ants take their navigational systems into operation? After conducting different tasks in the dark nest for several weeks, they become foragers under bright sun light. This transition requires both a drastic switch in behavior and neuronal changes in the brain. Experienced foragers mainly rely on visual cues. They use a celestial compass and landmark panoramas. For that reason, naïve ants perform stereotype learning walks to calibrate their compass systems and acquire information about the nest's surroundings. During their learning walks, the ants frequently look back to the nest entrance to learn the homing direction. For aligning their gazes, they use the earth's magnetic field as a compass reference. This magnetic compass in Cataglyphis ants was previously unknown.  相似文献   

2.
The question of how migrating birds find their way to winter quarters and back has fascinated humans since the beginning of scientific research into avian biology. Migrating birds have been shown to possess compass systems that allow them to select and maintain certain compass directions. Three such systems are known, solar, stellar and magnetic. Their details are not quite clear and need further research. Hierarchy and interaction of compass systems of migrating birds are poorly studied; different species may vary in this respect. During migration, birds learn to use maps that make true navigation possible, i.e. to detect their position relatively to the goal of movement. The physical nature of navigational maps is an object of intensive research; currently the most promising concepts are the geomagnetic and possibly olfactory maps. A significant contribution to the study of formation of navigational maps was made by Soviet/Russian researchers, whose work was published in Zoologicheskii Zhurnal (Sokolov et al., 1984). Migrating birds have no innate map, and first-autumn individuals reach their species-specific wintering areas by using compass sense and counting time that should be spent moving in certain genetically fixed directions. However, in recent years more and more data surface that suggest that juveniles (maybe not of all species) do have some mechanism of controlling their position on the migratory route that allows them to compensate for errors of the spatio-temporal programme of migration.  相似文献   

3.
Bird migration and orientation at high latitudes are of special interest because of the difficulties associated with different compass systems in polar areas and because of the considerable differences between flight routes conforming to loxodromes (rhumblines) or orthodromes (great circle routes). Regular and widespread east-north-east migration of birds from the northern tundra of Siberia towards North America across the Arctic Ocean (without landmark influences) were recorded by ship-based tracking radar studies in July and August. Field observations indicated that waders, including species such as Phalaropusfulicarius and Calidris melanotos, dominated, but also terns and skuas may have been involved. Analysis of flight directions in relation to the wind showed that these movements are not caused by wind drift. Assuming possible orientation principles based on celestial or geomagnetic cues, different flight trajectories across the Arctic Ocean were calculated: geographical loxodromes, sun compass routes, magnetic loxodromes and magnetoclinic routes. The probabilities of these four alternatives are evaluated on the basis of both the availability of required orientation cues and the predicted flight paths. This evaluation supports orientation along sun compass routes. Because of the longitudinal time displacement sun compass routes show gradually changing compass courses in close agreement with orthodromes. It is suggested that an important migration link between Siberia and North American stopover sites 1000-2500km apart across the Arctic Ocean has evolved based on sun compass orientation along orthodrome-like routes.  相似文献   

4.
Aquatic and terrestrial amphibians integrate acoustic, magnetic, mechanical, olfactory and visual directional information into a redundant-multisensory orientation system. The sensory information is processed to accomplish homing following active or passive displacement by either path integration, beaconing, pilotage, compass orientation or true navigation. There is evidence for two independent compass systems, a time-compensated compass based on celestial cues and a light-dependent magnetic inclination compass. Beaconing along acoustic or olfactory gradients emanating from the home site, as well as pilotage along fixed visual landmarks also form an important part in the behaviour of many species. True navigation has been shown in only one species, the aquatic salamander Notophthalmus viridescens. Evidence on the nature of the navigational map obtained so far is compatible with the magnetic map hypothesis.  相似文献   

5.
Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.  相似文献   

6.
《Animal behaviour》1988,36(1):150-158
Despite being the most studied of all avian orientation systems, important questions still remain about the sun compass of homing pigeons, Columba livia. White it is well-documented that the sun compass is usually learned by young pigeons during the first 10–12 weeks of life, the mechanism by which it is calibrated to adjust for seasonal changes in the sun's azimuth is not known with certainty. Previous experiments using short-term deflector loft pigeons indicated that the sun compass may be calibrated by referencing celestial polarization patterns. The present paper describes important measurable changes in the previously reported orientation behaviour of short-term deflector loft birds, and suggests a correlation between these changes and the presence of a massive upper-atmospheric dust cloud of volcanic origin which significantly altered natural skylight polarization patterns in 1982 and 1983. Moreover, it is shown that when the short-term effect was absent (at times when data from previous years suggested it should be present), the birds were also not using sun compass orientation, as demonstrated by their failure to show the standard ‘clockshift’ response to a 6-h fast shift of their internal clocks. These results support the hypothesis that reflected light cues, rather than odours, are the basis of the deflector loft effect in pigeon homing.  相似文献   

7.
Intracellular asymmetry in the signaling network works as a compass to navigate eukaryotic chemotaxis in response to guidance cues. Although the compass variable can be derived from a self-organization dynamics, such as excitability, the responsible mechanism remains to be clarified. Here, we analyzed the spatiotemporal dynamics of the phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) pathway, which is crucial for chemotaxis. We show that spontaneous activation of PtdInsP3-enriched domains is generated by an intrinsic excitable system. Formation of the same signal domain could be triggered by various perturbations, such as short impulse perturbations that triggered the activation of intrinsic dynamics to form signal domains. We also observed the refractory behavior exhibited in typical excitable systems. We show that the chemotactic response of PtdInsP3 involves biasing the spontaneous excitation to orient the activation site toward the chemoattractant. Thus, this biased excitability embodies the compass variable that is responsible for both random cell migration and biased random walk. Our finding may explain how cells achieve high sensitivity to and robust coordination of the downstream activation that allows chemotactic behavior in the noisy environment outside and inside the cells.  相似文献   

8.
Intracellular asymmetry in the signaling network works as a compass to navigate eukaryotic chemotaxis in response to guidance cues. Although the compass variable can be derived from a self-organization dynamics, such as excitability, the responsible mechanism remains to be clarified. Here, we analyzed the spatiotemporal dynamics of the phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) pathway, which is crucial for chemotaxis. We show that spontaneous activation of PtdInsP3-enriched domains is generated by an intrinsic excitable system. Formation of the same signal domain could be triggered by various perturbations, such as short impulse perturbations that triggered the activation of intrinsic dynamics to form signal domains. We also observed the refractory behavior exhibited in typical excitable systems. We show that the chemotactic response of PtdInsP3 involves biasing the spontaneous excitation to orient the activation site toward the chemoattractant. Thus, this biased excitability embodies the compass variable that is responsible for both random cell migration and biased random walk. Our finding may explain how cells achieve high sensitivity to and robust coordination of the downstream activation that allows chemotactic behavior in the noisy environment outside and inside the cells.  相似文献   

9.
The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.  相似文献   

10.
We report evidence for magnetic compass orientation by larval Drosophila melanogaster. Groups of larvae were exposed from the time of hatching to directional ultraviolet (365 nm) light emanating from one of four magnetic directions. Larvae were then tested individually on a circular agar plate under diffuse light in one of four magnetic field alignments. The larvae exhibited magnetic compass orientation in a direction opposite that of the light source in training. Evidence for a well-developed magnetic compass in a larval insect that moves over distances of at most a few tens of centimeters has important implications for understanding the adaptive significance of orientation mechanisms like the magnetic compass. Moreover, the development of an assay for studying magnetic compass orientation in larval D. melanogaster will make it possible to use a wide range of molecular genetic techniques to investigate the neurophysiological, biophysical, and molecular mechanisms underlying the magnetic compass.  相似文献   

11.
The magnetic compass sense of animals is currently thought to be based on light-dependent processes like the proposed radical pair mechanism. In accordance, many animals show orientation responses that depend on light. However, the orientation responses depend on the wavelength and irradiance of monochromatic light in rather complex ways that cannot be explained directly by the radical pair mechanism. Here, a radically different model is presented that can explain a vast majority of the complex observed light-dependent responses. The model put forward an integration process consisting of simple lateral inhibition between a normal functioning, light-independent magnetic compass (e.g. magnetite based) and a vision based skylight color gradient compass that misperceives compass cues in monochromatic light. Integration of the misperceived color compass cue and the normal magnetic compass not only explains most of the categorically different light-dependent orientation responses, but also shows a surprisingly good fit to how well the animals are oriented (r-values) under light of different wavelength and irradiance. The model parsimoniously suggests the existence of a single magnetic sense in birds (probably based on magnetic crystals).  相似文献   

12.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

13.
Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.  相似文献   

14.
Summary The compass depressors are bands of soft tissue which connect the compass ossicles of the echinoid lantern to the inner edge of the test. They are essentially ligaments with on one side a thin layer of muscle cells. The ligamentous component consists mainly of a parallel array of collagen fibrils with interspersed 12 nm microfibrils. The most notable cellular constituents are granule-containing cell bodies and their processes which resemble the juxtaligamental cells that have been found in all echinoderm mutable collagenous tissues and which may control the tensility of these tissues. The muscle cells occupy about 8% of the total cross-sectional area of the compass depressor and are located in a richly innervated pseudostratified myoepithelium. When subjected to constant low loads in creep tests the compass depressor stretches to a fixed length beyond which there is no further extension. The length at this creep limit coincides with the maximum length to which the compass depressor is stretched by natural movements of the intact lantern. Stress-strain tests show that treatment with 1 mM acetylcholine or 100 mM K+ ions can increase reversibly the stiffness of the compass depressor to an extent that cannot be due to contraction of the myoepithelium, suggesting that the mechanical properties of the ligament are under physiological control. Tension-length data on the myoepithelium suggest that it generates a maximum active tension when the compass depressor is stretched to the creep limit. The implications of these results for the function of the compass depressors are discussed.  相似文献   

15.
When young pigeons begin to fly, their only means of orientation appears to be a magnetic compass provided by their innate ability to perceive the geomagnetic field. This magnetic compass enables the birds to calibrate other potential orientation stimuli found in their environment thus establishing complex learned mechanisms of orientation preferentially used by experienced birds, like the sun compass and the navigational “map”. The learning processes are described and discussed.  相似文献   

16.
Zusammenfassung V?gel stellen den Bezug zum Ziel indirekt über ein externes Referenzsystem her. Der Navigationsproze? besteht deshalb aus zwei Schritten: zun?chst wird die Richtung zum Ziel als Kompa?kurs festgelegt, dann wird dieser Kurs mit Hilfe eines Kompa?mechanismus aufgesucht. Das Magnetfeld der Erde und Himmelsfaktoren werden von den V?gel als Kompa? benutzt. In der vorliegenden Arbeit werden der Magnetkompa?, der Sonnenkompa? und der Sternkompa? der V?gel in ihrer Funktionsweise, ihrer Entstehung und ihrer biologischen Bedeutung vorgestellt. Der Magnetkompa? erwies sich als Inklinationskompa?, der nicht auf der Polarit?t, sondern auf der Neigung der Feldlinien im Raum beruht; er unterscheidet „polw?rts“ und „?quatorw?rts“ statt Nord und Süd. Er ist ein angeborener Mechanismus und wird beim Vogelzug und beim Heimfinden benutzt. Seine eigentliche Bedeutung liegt jedoch darin, da? er ein Referenzsystem bereitstellt, mit dessen Hilfe andere Orientierungsfaktoren zueinander in Beziehung gesetzt werden k?nnen. Der Sonnenkompa? beruht auf Erfahrung; Sonnenazimut, Tageszeit und Richtung werden durch Lernprozesse miteinander verknüpft, wobei der Magnetkompa? als Richtungsreferenzsystem dient. Sobald er verfügbar ist, wird der Sonnenkompa? bei der Orientierung im Heimbereich und beim Heimfinden bevorzugt benutzt; beim Vogelzug spielt er, wahrscheinlich wegen seiner Abh?ngigkeit von der geographischen Breite, kaum eine Rolle. Der Sternkompa? arbeitet ohne Beteiligung der Inneren Uhr; die V?gel leiten Richtungen aus den Konfigurationen der Sterne zueinander ab. Lernprozesse erstellen den Sternkompa? in der Phase vor dem ersten Zug; dabei fungiert die Himmelsrotation als Referenzsystem. Sp?ter, w?hrend des Zuges, übernimmt der Magnetkompa? diese Rolle. Die relative Bedeutung der verschiedenen Kompa?systeme wurde in Versuchen untersucht, bei denen Magnetfeld und Himmelsfaktoren einander widersprechende Richtungs-information gaben. Die erste Reaktion der V?gel war von Art zu Art verschieden; langfristig scheinen sich die V?gel jedoch nach dem Magnetkompa? zu richten. Dabei werden die Himmelsfaktoren umgeeicht, so da? magnetische Information und Himmelsinformation wieder im Einklang stehen. Der Magnetkompa? und die Himmelsfaktoren erg?nzen einander: der Magnetkompa? ersetzt Sonnen- und Sternkompa? bei bedecktem Himmel; die Himmelsfaktoren erleichtern den V?geln das Richtungseinhalten, zu dem der Magnetkompa? offenbar wenig geeignet ist. Magnetfeld und Himmelsfaktoren sollten deshalb als integrierte Komponenten eines multifaktoriellen Systems zur Richtungsorientierung betrachtet werden.
The orientation system of birds — I. Compass mechanisms
Summary Because of the large distances involved, birds establish contact with their goal indirectly via an external reference. Hence any navigation is a two-step process: in the first step, the direction to the goal is determined as a compass course; in the second step, this course is located with a compass. The geomagnetic field and celestial cues provide birds with compass information. The magnetic compass of birds, the sun compass the star compass and the interactions between the compass mechanisms are described in the present paper. Magnetic compass orientation was first demonstrated by testing night-migrating birds in experimentally altered magnetic fields: the birds changed their directional tendencies according to the deflected North direction. The avian magnetic compass proved to be an inclination compass: it does not use polarity; instead it is based on the axial course of the field lines and their inclination in space, distinguishing “poleward” and “equatorward” rather than North and South. Its functional range is limited to intensities around the local field strength, but this biological window is flexible and can be adjusted to other intensities. The magnetic compass is an innate mechanism that is widely used in bird migration and in homing. Its most important role, however, is that of a basic reference system for calibrating other kinds of orientation cues. Sun compass orientation is demonstrated by clock-shift experiments: Shifting the birds' internal clock causes them to misjudge the position of the sun, thus leading to typical deflections which indicate sun compass use. The analysis of the avian sun compass revealed that it is based only on sun azimuth and the internal clock; the sun's altitude is not involved. The role of the pattern of polarized light associated with the sun is unclear; only at sunset has it been shown to be an important cue for nocturnal migrants, being part of the sun compass. The sun compass is based on experience; sun azimuth, time of day and direction are combined by learning processes during a sensitive period, with the magnetic compass serving as directional reference. When established, the sun compass becomes the preferred compass mechanism for orientation tasks within the home region and homing: in migration, however, its role is minimal, probably because of the changes of the sun's arc with geographic latitude. The star compass was demonstrated in night-migrating birds by projecting the northern stars in different directions in a planetarium. The analysis of the mechanism revealed that the internal clock is not involved; birds derive directions from the spatial relationship of the star configurations. The star compass is also established by experience; the directional reference is first provided by celestial rotation, later, during migration, by the magnetic compass. The relative importance of the various compass mechanisms has been tested in experiments in which celestial and magnetic cues gave conflicting information. The first response of birds to conflicting cues differs considerably between species; after repeated exposures, however, the birds oriented according to magnetic North, indicating a long-term dominance of the magnetic compass. Later tests in the absence of magnetic information showed that celestial cues were not simply ignored, but recalibrated so that they were again in agreement with magnetic cues. The magnetic compass and celestial cues complement each other: the magnetic field ensures orientation under overcast sky; celestial cues facilitate maintaining directions, for which the magnetic compass appears to be ill suited. In view of this, the magnetic field and celestial cues should be regarded as integrated components of a multifactorial system for directional orientation.
  相似文献   

17.
In response to reports claiming that part of the ability of mole-rats (Bathyergidae) to orientate with respect to the geomagnetic field involves orientation of their burrow systems in a southward direction, we measured the orientation of burrows of the Damara mole-rat, Cryptomys damarensis , in the Kalahari Desert. It was found that burrow orientation was not significantly different from that expected for a random distribution of compass orientations.  相似文献   

18.
The magnetic compass of a migratory bird, the European robin (Erithacus rubecula), was shown to be lateralized in favour of the right eye/left brain hemisphere. However, this seems to be a property of the avian magnetic compass that is not present from the beginning, but develops only as the birds grow older. During first migration in autumn, juvenile robins can orient by their magnetic compass with their right as well as with their left eye. In the following spring, however, the magnetic compass is already lateralized, but this lateralization is still flexible: it could be removed by covering the right eye for 6 h. During the following autumn migration, the lateralization becomes more strongly fixed, with a 6 h occlusion of the right eye no longer having an effect. This change from a bilateral to a lateralized magnetic compass appears to be a maturation process, the first such case known so far in birds. Because both eyes mediate identical information about the geomagnetic field, brain asymmetry for the magnetic compass could increase efficiency by setting the other hemisphere free for other processes.  相似文献   

19.
Domestic chicks are able to find a food goal at different times of day, with the sun as the only consistent visual cue. This suggests that domestic chickens may use the sun as a time-compensated compass, rather than as a beacon. An alternative explanation is that the birds might use the earth's magnetic field. In this study, we investigated the role of the sun compass in a spatial orientation task using a clock-shift procedure. Furthermore, we investigated whether domestic chickens use magnetic compass information when tested under sunny conditions.Ten ISA Brown chicks were housed in outdoor pens. A separate test arena comprised an open-topped, opaque-sided, wooden octagonal maze. Eight goal boxes with food pots were attached one to each of the arena sides. A barrier inside each goal box prevented the birds from seeing the food pot before entering. After habituation, we tested in five daily 5-min trials whether chicks were able to find food in an systematically allocated goal direction. We controlled for the use of olfactory cues and intra-maze cues. No external landmarks were visible. All tests were done under sunny conditions. Circular statistics showed that nine chicks significantly oriented goalwards using the sun as the only consistent visual cue during directional testing. Next, these nine chicks were subjected to a clock-shift procedure to test for the role of sun-compass information. The chicks were housed indoors for 6 days on a light-schedule that was 6 h ahead of the natural light–dark schedule. After clock-shifting, the birds were tested again and all birds except one were disrupted in their goalward orientation. For the second experiment, six birds were re-trained and fitted with a tiny, powerful magnet on the head to disrupt their magnetic sense. The magnets did not affect the chicks’ goalward orientation.In conclusion, although the strongest prediction of the sun-compass hypothesis (significant re-orientation after clock-shifting) was neither confirmed nor refuted, our results suggest that domestic chicks use the sun as a compass rather than as a beacon. These findings suggest that hens housed indoors in large non-cage systems may experience difficulties in orientation if adequate alternative cues are unavailable. Further research should elucidate how hens kept in non-cage systems orient in space in relation to available resources.  相似文献   

20.
We provide evidence for the use of a magnetic compass for y-axis orientation (i.e., orientation along the shore-deep water axis) by tadpoles of the European common frog (Rana temporaria). Furthermore, our study provides evidence for a wavelength-dependent effect of light on magnetic compass orientation in amphibians. Tadpoles trained and then tested under full-spectrum light displayed magnetic compass orientation that coincided with the trained shore-deep water axes of their training tanks. Conversely, tadpoles trained under long-wavelength (≥500 nm) light and tested under full-spectrum light, and tadpoles trained under full-spectrum light and tested under long-wavelength (≥500 nm) light, exhibited a 90° shift in magnetic compass orientation relative to the trained y-axis direction. Our results are consistent with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength (≥500 nm) light is due to a direct effect of light on the underlying magnetoreception mechanism. These findings also show that wavelength-dependent effects of light do not compromise the function of the magnetic compass under a wide range of natural lighting conditions, presumably due to a large asymmetry in the relatively sensitivity of antagonistic short- and long-wavelength inputs to the light-dependent magnetic compass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号