首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report the dose-dependent antioxidant activity and DNA protective effects of zingerone. At 500 μg/mL, the DPPH radical scavenging activity of zingerone and ascorbic acid as a standard was found to be 86.7 and 94.2 % respectively. At the same concentration, zingerone also showed significant reducing power (absorbance 0.471) compared to that of ascorbic acid (absorbance 0.394). The in vitro toxicity of stannous chloride (SnCl2) was evaluated using genomic and plasmid DNA. SnCl2-induced degradation of genomic DNA was found to occur at a concentration of 0.8 mM onwards with complete degradation at 1.02 mM and above. In the case of plasmid DNA, conversion of supercoiled DNA into the open circular form indicative of DNA nicking activity was observed at a concentration of 0.2 mM onwards; complete conversion was observed at a concentration of 1.02 mM and above. Zingerone was found to confer protection against SnCl2-induced oxidative damage to genomic and plasmid DNA at concentrations of 500 and 750 μg/mL onwards, respectively. This protective effect was further confirmed in the presence of UV/H2O2-a known reactive oxygen species (ROS) generating system-wherein protection by zingerone against ROS-mediated DNA damage was observed at a concentration of 250 μg/mL onwards in a dose-dependent manner. This study clearly indicated the in vitro DNA protective property of zingerone against SnCl2-induced, ROS-mediated DNA damage.  相似文献   

2.
Natural antioxidants play an important role in promoting good health because of their prevention for oxidative damage. The work aimed to explore the antioxidant mechanism and activity of cannabidiol (CBD) at the cellular level. The human umbilical vein endothelial cell (HUVEC) with oxidative damage was employed as the model to study the protective capability of CBD. The results showed that CBD pre-treatment before the cells were exposed to hydrogen peroxide (H2O2) resulted in an obvious increase of cell viability (about 100 %) and antioxidant related enzymes activity, and a decline of malondialdehyde (MDA) level. Besides, CBD could alleviate the increase of intracellular reactive oxygen species (ROS) content, the contraction of nucleus, and condensation of chromatin. The changes showed a dose-dependent effect. Additionally, the free radicals scavenging capacity of CBD was comparable to that of typical natural antioxidant, anthocyanidins. In summary, CBD could be employed as a potent antioxidant source for avoiding the oxidative damage. These results could provide the foundation for the development of CBD antioxidant products.  相似文献   

3.
Salinas E  Romo R 《Cell》2007,129(2):245-247
"Working memory" is used for the transient storage of information in the brain. In this issue of Cell, Wang et al. (2007) now reveal how a series of molecular events involving alpha2A-adrenoceptors and a class of ion channels gated by cAMP tune the responses of neural circuits that function in working memory in mammals.  相似文献   

4.
Plasminogen     
Plasminogen activator inhibitor-2 (PAI-2) specifically inhibits plasminogen activators, extracellular fibrinolytic serine proteases that are also implicated in brain plasticity and toxicity. Primarily localized intracellularly, PAI-2 is thought to also counteract apoptosis mediated by a currently undefined intracellular protease. Here we localized PAI-2 mRNA through in situ hybridization in brain cryosections derived from normal adult mice or after kainate excitation. We found that in the normal brain PAI-2 mRNA was confined to an area within the accumbens nucleus shell. After kainate was injected (i.p.), PAI-2 mRNA was substantially and rapidly (within 2 h) induced in neuron-like cells primarily in layers II-III of the neocortex; the cingulate, piriform, entorhinal and perirhinal cortices; the olfactory bulb, nucleus and tubercle; in the accumbens nucleus, shell and core; throughout the caudate putamen and the amygdaloid complex; in the CA1 and CA3 areas of the hippocampus, and in the parasubiculum. These findings suggest that PAI-2 could play a role in the accumbens nucleus as well as in activity-related events associated with olfactory, striatal, and limbic structures.  相似文献   

5.
THERE are two principal theories of the mechanism of thrombus dissolution by the fibrinolytic system. Alkjaersig et al.1 suggested that as fibrin polymerizes, plasminogen is adsorbed preferentially to the fibrin and is available in large quantities within a thrombus which is comparatively free of antiplasmin. When an activator enters the circulation it diffuses into the clot converting the plasminogen to plasmin in situ and so promotes lysis. Ambrus and Markus2, however, proposed that when plasmin forms in the circulation naturally or during infusion of an activator it is normally bound to the excess antiplasmin present in blood. They suggested that this plasmin/antiplasmin complex is reversible and dissociates in the presence of fibrin, its preferred substrate, so allowing the plasmin to bring about fibrin dissolution by “external lysis”. Neither of these theories, however, is supported by an observed phenomena.  相似文献   

6.
Cellular response to DNA damage involves the coordinated activation of cell cycle checkpoints and DNA repair. The early steps of DNA damage recognition and signaling in mammalian cells are not yet fully understood. To investigate the regulation of the DNA damage response (DDR), we designed short and stabilized double stranded DNA molecules (Dbait) mimicking double-strand breaks. We compared the response induced by these molecules to the response induced by ionizing radiation. We show that stable 32-bp long Dbait, induce pan-nuclear phosphorylation of DDR components such as H2AX, Rpa32, Chk1, Chk2, Nbs1 and p53 in various cell lines. However, individual cell analyses reveal that differences exist in the cellular responses to Dbait compared to irradiation. Responses to Dbait: (i) are dependent only on DNA-PK kinase activity and not on ATM, (ii) result in a phosphorylation signal lasting several days and (iii) are distributed in the treated population in an “all-or-none” pattern, in a Dbait-concentration threshold dependant manner. Moreover, despite extensive phosphorylation of the DNA-PK downstream targets, Dbait treated cells continue to proliferate without showing cell cycle delay or apoptosis. Dbait treatment prior to irradiation impaired foci formation of Nbs1, 53BP1 and Rad51 at DNA damage sites and inhibited non-homologous end joining as well as homologous recombination. Together, our results suggest that the hyperactivation of DNA-PK is insufficient for complete execution of the DDR but induces a “false” DNA damage signaling that disorganizes the DNA repair system.  相似文献   

7.
This paper concerns the mechanism of mitosis. I briefly reviewthe history of mitosis research, emphasizing the role of microscopicobservation. The polymerization and depolymerization of microtubulesplay central roles in both the assembly of the spindle, andin the way it moves chromosomes. I describe recent advancesin understanding the dynamic behavior of individual microtubules,and of microtubules attached to kinetochores. The kinetochoreis able to hold on to microtubule ends while allowing them togrow and shrink, reactions that can be studied both in livingcells and in the test tube. Experiments in which microtubulesin living cells are marked and then followed allow us to relatethese individual dynamic processes to the overall mechanismof chromosome movement. I end the review by speculating aboutbiochemical mechanisms for producing force on chromosomes inanaphase, and for balancing chromosomes in the center of themetaphase spindle.  相似文献   

8.
Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.  相似文献   

9.
The objective of this study was to determine whether inhibition of intracellular catalase would decrease the tolerance of the heart to ischemia-reperfusion and hydrogen peroxide-induced injuries. Isolated bicarbonate buffer-perfused rat hearts were used in the study. Intracellular catalase was inhibited with 3-amino-1,2,4-triazole (ATZ, 1.5 g/kg body weight, two hours prior to heart perfusion). In the ischemia-reperfusion protocol, hearts were arrested with St. Thomas' II cardioplegic solution, made ischemic for 35 min at 37°C, and reperfused with Krebs-Henseleit buffer for 30 min. The extent of ischemic injury was assessed using postischemic contractile recovery and lactate dehydrogenase (LDH) leakage into reperfusate. In the hydrogen peroxide infusion protocol, hearts were perfused with increasing concentrations of hydrogen peroxide (inflow rates 0.05-1.25 μmol/min). Inhibition of catalase activity (30.4 ± 1.8 mU/mg protein in control vs 2.4 ± 0.3 mU/mg in ATZ-treated hearts) affected neither pre-ischemic aerobic cardiac function nor post-ischemic functional recovery and LDH release in hearts subjected to 35 min cardioplegic ischemic arrest. Myocardial contents of lipid hydroperoxides were similar in control and ATZ-treated animals after 20 min aerobic perfusion, ischemia, and ischemia-reperfusion. During hydrogen peroxide perfusion, there was an increase in coronary flow rate followed by an elevation in diastolic pressure and inhibition of contractile function in comparison with control hearts. The functional parameters between control and ATZ-treated groups remained unchanged. The concentrations of myocardial lipid hydroperoxides were the same in both groups. We conclude that inhibition of myocardial catalase activity with ATZ does not predispose the rat heart to ischemia-reperfusion and hydrogen peroxide-induced injury.  相似文献   

10.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

11.
External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function.  相似文献   

12.
13.
《Nature medicine》1999,5(12):1343-1344
  相似文献   

14.
Oxidative stress is highly damaging to cellular macromolecules and is also considered a main cause of the loss and impairment of neurons in several neurodegenerative disorders. Recent reports indicate that farnesene (FNS), an acyclic sesquiterpene, has antioxidant properties. However, little is known about the effects of FNS on oxidative stress-induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of different FNS isomers (α-FNS and β-FNS) and their mixture (Mix-FNS) in H2O2-induced toxicity in newborn rat cerebral cortex cell cultures for the first time. For this aim, both MTT and lactate dehydrogenase assays were carried out to evaluate cell viability. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to assess oxidative alterations. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels in vitro, the comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (comet assay) increased in the group treated with H2O2 alone. But pretreatment of FNS suppressed the cytotoxicity, genotoxicity and oxidative stress, which were increased by H2O2 in clear type of isomers and applied concentration-dependent manners. The order of antioxidant effectiveness for modulating H2O2-induced oxidative stress-based neurotoxicity and genotoxicity is as β-FNS > Mix-FNS > α-FNS.  相似文献   

15.
Nanobiotechnology is a key enabling multidisciplinary field for medical, technological and biological research and development, medicine, pharmaceutical development, and analytical sciences. Its foundation is the selective integration of a multitude of endeavours, such as biotechnology, chemical and physical nanotechnology, materials sciences, chemistry, engineering, electronics and optronics targeting the construction of micro‐ and nano‐arrays for analyzing complex mixtures of DNA, RNA, proteins, metabolites as well as the design of ultra‐sequencing devices, microbial fuel cells, implantates, molecular motors, artificial organs, and nanorobots. The developments in nanobiotechnology benefit from and contribute to the scientific advances in the chemical and physical nanotechnologies, in particular with respect to materials, composites, nanostructuring techniques, carbon nanotubes, and nanoelectronics.  相似文献   

16.
17.
Fibronectin immobilized onto polystyrene surface was found to bind plasminogen and tissue-type plasminogen activator (t-PA) but only slightly the urokinase type as determined using mono- and polyclonal antibodies against the activators. Of the defined fibronectin fragments tested, the Mr 120,000-140,000 fragment was found to bind both plasminogen and t-PA. Proteolytically modified plasminogen (Lys-plasminogen) bound considerably better than the native form (Glu-plasminogen). Experiments with 125I-plasminogen yielded Kd = 9.1 X 10(-8) M for the binding to immobilized fibronectin. The partially or completely inactive single-chain form of t-PA (pro-t-PA) bound considerably better than the activated two-chain form. Lysine at greater than 3 mM inhibited the binding of plasminogen. The interaction was independent of calcium ions. CaCl2 (greater than 0.5 mM) and NaCl (greater than 0.2 M) inhibited the binding of pro-t-PA and of t-PA. Fibronectin-bound t-PA retained its ability to activate plasminogen. The observed interactions may operate in directional proteolysis localizing plasminogen and plasminogen activator to degrade fibronectin-containing extracellular matrix including fibrin clots.  相似文献   

18.

Background

Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs) are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities.

Methods and Results

We examined the effects of H2O2 on mouse CSCs (mCSCs), and observed that hydrogen peroxide (H2O2) treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2) or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway.

Conclusions

Our results provide the first evidences that Wnt1 plays an important role in CSCs’ defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.  相似文献   

19.
Plasminogen activator inhibitors--a review   总被引:15,自引:0,他引:15  
E K Kruithof 《Enzyme》1988,40(2-3):113-121
Plasminogen activator inhibitors (PAIs) are important modulators of the activity of plasminogen activators (PAs). Several inhibitors, all belonging to the serpin family of proteins, have been implicated in PA inhibition. In order of reaction rate constants these are PAI-1, PAI-2, protease nexin and PAI-3. This review gives an overview of the physicochemical characteristics of these inhibitors as well as a comparison of their primary structure with each other and with other members of the serpin family of proteins.  相似文献   

20.
Plasminogen activator-anti-human fibrinogen conjugate   总被引:1,自引:0,他引:1  
A covalent conjugate between the plasminogen activator urokinase and polyclonal rabbit anti-human fibrinogen has been formed using the heterobifunctional coupling reagent N-succinimidyl 3-(2-pyridyldithio) propionate. The resultant urokinase-anti-human fibrinogen conjugate was separated from unreacted material by gel filtration. The conjugate exhibited amidase activity against the small chromogenic substrate pyroglutamyl-glycyl-arginine-p-nitroanilide as well as plasminogen activator activity in an assay employing plasminogen and the plasmin substrate D-valyl-leucyl-lysine-p-nitroanilide. Retention of antibody specificity for fibrinogen was demonstrated using an enzyme linked immunoassay procedure. The conjugate was found to have greater stability in human plasma than unconjugated urokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号