首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pedilanthus tithymaloides (Redbird flower) is an ornamental shrub that occasionally exhibits leaf curl and enation symptoms in Pakistan. Symptoms were shown to be associated with a monopartite begomovirus and a betasatellite. The complete nucleotide sequence of the begomovirus was found to be 2764 nucleotides in length and have the highest nucleotide sequence identity to a begomovirus previously isolated from tomato (90.3% nucleotide sequence identity), followed by Radish leaf curl virus (86.3%). The complete betasatellite sequence was determined to be 1358 nucleotides in length and has the highest sequence identity (97%) with Tobacco leaf curl betasatellite . The analysis shows the begomovirus associated with leaf curl disease of Pedilanthus to be a distinct and previously unreported begomovirus for which the name Pedilanthus leaf curl virus (PedLCV) is proposed. This virus is one of an increasing number of monopartite begomoviruses shown to be associated with a betasatellite.  相似文献   

2.
Cotton leaf curl disease (CLCuD) is a severe disease of cotton that occurs in Africa and Pakistan/northwestern India. The disease is caused by begomoviruses in association with specific betasatellites that differ between Africa and Asia. During survey of symptomatic cotton in Sindh (southern Pakistan) Cotton leaf curl Gezira virus (CLCuGV), the begomovirus associated with CLCuD in Africa, was identified. However, the cognate African betasatellite (Cotton leaf curl Gezira betasatellite) was not found. Instead, two Asian betasatellites, the CLCuD-associated Cotton leaf curl Multan betasatellite (CLCuMB) and Chilli leaf curl betasatellite (ChLCB) were identified. Inoculation of the experimental plant species Nicotiana benthamiana showed that CLCuGV was competent to maintain both CLCuMB and ChLCB. Interestingly, the enations typical of CLCuD were only induced by CLCuGV in the presence of CLCuMB. Also in infections involving both CLCuMB and ChLCB the enations typical of CLCuMB were less evident. This is the first time an African begomovirus has been identified on the Indian sub-continent, highlight the growing threat of begomoviruses and particularly the threat of CLCuD causing viruses to cotton cultivation in the rest of the world.  相似文献   

3.
Eggplant (Solanum melongena L.) plants with severe leaf mosaic and mottling were found in a kitchen garden near cotton fields in Pakistan. Rolling Circle Amplification products from six of the naturally infected eggplant plants, subjected to PCR, successfully amplified expected products of 2.8 and 1.4 kb using begomovirus and betasatellite‐specific primers, respectively. Based on 99% nucleotide sequence identity, the virus was identified as a variant of Cotton leaf curl Burewala virus (CLCuBuV) (GenBank Accession No. HG428709). Likewise, the sequenced betasatellite with a maximum of 97% nucleotide sequence identity was recognized as a new variant of Cotton leaf curl Multan betasatellite (CLCuMuBMul) (GenBank Accession No. HG428708). The symptomatic induction of Cotton leaf curl disease in CLCuBuV susceptible cotton genotype CIM‐496 by back‐indexing further confirmed the presence of CLCuBuV in eggplant. This is the first report of CLCuBuV and its associate betasatellite in naturally infected plants of eggplant.  相似文献   

4.
An epidemic of chilli leaf curl disease was recorded in 2004 in Jodhpur, a major chilli‐growing area in Rajasthan, India. Several isolates were efficiently transmitted by the whitefly (Bemisia tabaci), all of which induced severe leaf curl symptoms in chilli. A single whitefly was capable of transmitting the virus, and eight or more whiteflies per plant resulted in 100% transmission. The minimum acquisition access period (AAP) and inoculation access period (IAP) were 180 and 60 min, respectively. The virus persisted in whiteflies for up to 5 days postacquisition. Of 25 species tested, the virus infected only five (Capsicum annuum, Carica papaya, Solanum lycopersicum, Nicotiana tabacum and N. benthamiana). The virus was identified as Chilli leaf curl virus (ChiLCV), which shared the closest sequence identity (96.1%) with an isolate of ChiLCV from potato in Pakistan and showed sequence diversity up to 12.3% among the ChiLCV isolates reported from India and Pakistan. A betasatellite was identified, which resembled most closely (97.3%) that of Tomato leaf curl Bangladesh betasatellite previously reported from chilli and tomato leaf curl in India. The betasatellite was very different from that reported from chilli leaf curl in Pakistan, indicating that different betasatellites are associated with chilli leaf curl in India and Pakistan. We describe here for the first time the virus–vector relationships and host range of ChiLCV.  相似文献   

5.
The complete nucleotide sequence of a satellite molecule associated with Malvastrum leaf curl Guangdong virus (MLCuGdV) infecting M. coromandelianum plants exhibiting leaf curl symptoms in a suburb of Guangzhou, Guangdong Province of China, is described and analysed. The molecule has typical features of betasatellites, containing a single ORF in the complementary‐sense strand, an A‐rich region, the satellite‐conserved region and a stem–loop structure. Compared with the geminivirus betasatellites in GenBank database, this molecule shows the highest nucleotide sequence identity of 71.9% with Tomato leaf curl Philippine betasatellite isolate Laguna1 (ToLCPB, AB307732). Phylogenetic analysis indicates that it is more related to isolate Laguna 1 and Laguna 2 of ToLCPB. According to the proposed species demarcation threshold of betasatellites (78% nucleotide identity), it is a novel betasatellite species, for which we propose the name Malvastrum leaf curl Guangdong betasatellite (MLCuGdB).  相似文献   

6.
Cotton is an important crop and its production is affected by various disease pathogens. Monopartite begomovirus associated betasatellites cause Cotton leaf curl disease (CLCuD) in Northern India. In order to access the occurrence and genetic variability of Cotton leaf curl betasatellites, an extensive field survey was conducted in states of Rajasthan, Punjab and Haryana. We selected the betasatellite sequence for analysis as they are reported as important for disease severity and sequence variability. Based on the field observations, the disease incidence ranged from 30% to 80% during the survey. Full genome and DNA β were amplified from various samples while no amplicon was obtained in some samples. The nucleotide sequence homology ranged from 90.0% to 98.7% with Cotton leaf curl virus (CLCuV), 55.2–55.5% with Bhendi yellow vein mosaic virus, 55.8% with Okra leaf curl virus and 51.70% with Tomato leaf curl virus isolates. The lowest similarity (47.8%) was found in CLCuV-Sudan isolate. Phylogenetic analysis showed that analyzed isolates formed a close cluster with various CLCuV isolates reported earlier. The analysis results show sequence variation in Cotton leaf curl betasatellite which could be the result of recombination. The results obtained by genome amplification and sequence variability indicate that some new variants are circulating and causing leaf curl disease in Rajasthan, Punjab and Haryana.Abbreviations: CLCuD, Cotton leaf curl disease; CLCuV, Cotton leaf curl virus; PCR, polymerase chain reaction; SCR, satellite conserved region  相似文献   

7.
Kidney bean (Phaseolus vulgaris) plants exhibiting foliar yellow mosaic symptoms and some leaf crumpling were identified in the Al Batinah region of Oman. Rolling circle amplification and polymerase chain reaction identified a bipartite begomovirus (family Geminiviridae) and a betasatellite in association with the symptomatic plants. Analysis of full‐length sequences showed the virus to be Mungbean yellow mosaic Indian virus (MYMIV) and the betasatellite Tomato leaf curl betasatellite (ToLCB). This is the first identification of a legume‐adapted begomovirus in Oman and the first identification of MYMIV in association with the betasatellite ToLCB. The isolate of MYMIV from Oman shows the greatest levels of sequence identity to isolates occurring in South Asia and South‐East Asia, suggesting that the virus has only recently been introduced. The significance of these findings is discussed.  相似文献   

8.
Cluster bean (Cyamopsis tetragonoloba) is a legume that is grown widely on the Indian subcontinent. Leaf curl symptoms of cluster bean plants collected in the Punjab, Pakistan, were shown to be associated with the begomovirus Papaya leaf curl virus; the first time this virus has been identified infecting cluster bean in Pakistan. The virus was shown to be associated with Tomato leaf curl betasatellite. Additionally, some cluster bean plants were shown to also harbour Cotton leaf curl Multan alphasatellite. The significance of these findings is discussed.  相似文献   

9.
A novel tomato-infecting begomovirus from Guangxi province, China, was identified and characterized, for which the name Tomato leaf curl China virus (ToLCCNV) was proposed. Phylogenetic and recombination analyses of the virus genomic sequences suggested that ToLCCNV may have arisen by recombination among Tomato leaf curl Vietnam virus (ToLCVV), Tomato leaf curl Gujarat virus (ToLCGV), and an unknown virus. A betasatellite molecule was found to be associated with ToLCCNV (ToLCCNB), and its complete nucleotide sequences were determined. Infectious clones of ToLCCNV and ToLCCNB were constructed and then used for agro-inoculation of plants; ToLCCNV alone infected Nicotiana benthamiana, Nicotiana glutinosa, Petunia hybrida, and Solanum lycopersicum plants, but no symptoms were induced. ToLCCNB was required for induction of leaf curl disease in these hosts. The βC1 protein of ToLCCNB was identified as a suppressor of RNA silencing and accumulated primarily in the nucleus. Deletion mutagenesis of βC1 showed that the central part of βC1 (amino acids 44 to 74) was responsible for both the suppressor activity and nuclear localization.  相似文献   

10.
Tomato (Solanum lycopersicum) plants exhibiting yellowing, curling and stunting symptoms were identified in fields of the Tawoos Agricultural Systems, in Al‐Batinah in Oman. Cloning and sequencing of restriction endonuclease digested rolling circle amplified viral DNA identified a cotton begomovirus (family Geminiviridae) associated with the symptomatic tomato plants. Detailed analysis of complete sequences showed the virus to be a previously unknown strain of Cotton leaf curl Gezira virus (CLCuGeV) in association with the betasatellite Tomato leaf curl betasatellite (ToLCB). The new CLCuGeV strain, for which the name “Al Batinah” strain is suggested, has the greatest levels of sequence identity (91.9%) to an isolate of CLCuGeV recently reported from the neighbouring United Arab Emirates. Additionally, CLCuGeV‐Al Batinah was shown to have a recombinant origin with sequences donated by an African cassava mosaic virus‐like parent. This is the first identification of this Malvaceae‐adapted begomovirus in tomato. Although ToLCB is common in Oman, being one of only two betasatellites identified there so far, this is the first identification of this betasatellite with CLCuGeV. The significance of these findings is discussed.  相似文献   

11.
Cotton leaf curl disease (CLCuD), caused by monopartite begomoviruses and its satellite molecules, is one of the serious constrains in cultivation of cotton in India. In the present study, five CLCuD-begomovirus and its associated satellite molecules were characterized based on rolling circle amplification and sequencing of complete genome. Sequence analysis showed 82–99 % nucleotide identity among them. The phylogenetic analysis and nt identity matrix determined that of the five CLCuD-begomovirus isolates, three IARI-34, IARI-42 and IARI-50 were members of Cotton leaf curl Multan virus (CLCuMuV)-Rajasthan isolates, designated as CLCuMuV-Rajasthan-34 and two, IARI-30 and IARI-45 of Cotton leaf curl Kokhran virus (CLCuKoV)-Burewala isolates, designated as CLCuKoV-Burewala-45. The present CLCuMuV-Rajasthan-34 is recombinant isolate showing recombination events in IR, C1 and C4 regions of its genome with high probality (P = 9.9 × 10?10–3.2 × 10?6). Same species of betasatellite (1371 nt) molecules obtained from both the present isolates was related with cotton leaf curl Multan betasatellite by 89–97 % nt identity. Three alphasatellites (1366–1396 nt) related to Cotton leaf curl Burewala alphasatellite and Gossypium darwinii symptomless alphasatellite by 86 % nt identity were also obtained. This is the first report of appearance of CLCuKoV-Burewala isolate and CLCuD associated alphasatellites in New Delhi. The present study demonstrated that CLCuD in New Delhi is caused by three kinds of variants, two are strains of CLCuMuV and one of CLCuKoV, either by single or mixed infection along with beta- and alpha-satellite molecues.  相似文献   

12.
Leaf curl disease symptoms were observed in tomato crop grown in a tomato field at Matera district of Bahraich, India, in March 2013 with an 85% disease incidence. The infected plants exhibited leaf curl symptoms accompanied with puckering, vein swelling and stunting of the whole plant. PCR carried out with begomovirus coat protein gene and DNA beta‐specific primer sets resulted in positive amplification of ~775 bp and 1.35 kbp, respectively, with all symptom‐bearing plant samples. BLASTn and phylogenetic analyses of CP gene sequences showed highest and close relationship with Croton yellow vein mosaic virus (CYVMV) isolates, while the phylogenetic study of betasatellite sequence showed distinct relationships with other begomovirus associated betasatellites reported from India and abroad. This is a first report of a CYVMV associated with tomato leaf curl disease in India.  相似文献   

13.
Begomoviruses (family Geminiviridae) are single-stranded DNA viruses transmitted by the whitefly Bemisia tabaci. Many economically important diseases in crops are caused by begomoviruses, particularly in tropical and subtropical environments. These include the betasatellite-associated begomoviruses causing cotton leaf curl disease (CLCuD) that causes significant losses to a mainstay of the economy of Pakistan, cotton. RNA interference (RNAi) or gene silencing is a natural defense response of plants against invading viruses. In counter-defense, viruses encode suppressors of gene silencing that allow them to effectively invade plants. Here, we have analyzed the ability of the begomovirus Cotton leaf curl Multan virus (CLCuMV) and its associated betasatellite, Cotton leaf curl Multan β-satellite (CLCuMB) which, together, cause CLCuD, and the nonessential alphasatellite (Cotton leaf curl Multan alphasatellite [CLCuMA]) for their ability to suppress gene silencing in Nicotiana benthamiana. The results showed that CLCuMV by itself was unable to efficiently block silencing. However, in the presence of the betasatellite, gene silencing was entirely suppressed. Silencing was not affected in any way when infections included CLCuMA, although the alphasatellite was, for the first time, shown to be a target of RNA silencing, inducing the production in planta of specific small interfering RNAs, the effectors of silencing. Subsequently, using a quantitative real-time polymerase chain reaction assay and Northern blot analysis, the ability of all proteins encoded by CLCuMV and CLCuMB were assessed for their ability to suppress RNAi and the relative strengths of their suppression activity were compared. The analysis showed that the V2, C2, C4, and βC1 proteins exhibited suppressor activity, with the V2 showing the strongest activity. In addition, V2, C4, and βC1 were examined for their ability to bind RNA and shown to have distinct specificities. Although each of these proteins has, for other begomoviruses or betasatellites, been previously shown to have suppressor activity, this is the first time all proteins encoded by a geminiviruses (or begomovirus-betasatellite complex) have been examined and also the first for which four separate suppressors have been identified.  相似文献   

14.

Background

Whitefly-transmitted geminiviruses (begomoviruses) are a major limiting factor for the production of numerous dicotyledonous crops throughout the world. Begomoviruses differ in the number of components that make up their genomes and association with satellites, and yet they cause strikingly similar phenotypes, such as leaf curling, chlorosis and stunted plant growth. MicroRNAs (miRNAs) are small endogenous RNAs that regulate plant growth and development. The study described here was aimed at investigating the effects of each virus encoded gene on the levels of developmental miRNAs to identify common trends between distinct begomoviruses.

Results

All genes encoded by four distinct begomoviruses (African cassava mosaic virus [ACMV], Cabbage leaf curl virus [CbLCuV], Tomato yellow leaf curl virus [TYLCV] and Cotton leaf curl virus/Cotton leaf curl betasatellite [CLCuV/CLCuMB]) were expressed from a Potato virus X (PVX) vector in Nicotiana benthamiana. Changes in the levels of ten miRNAs in response to the virus genes were determined by northern blotting using specific miRNA probes. For the monopartite begomoviruses (TYLCV and CLCuMV) the V2 gene product was identified as the major symptom determinant while for bipartite begomoviruses (ACMV and CbLCuV) more than one gene appears to contribute to symptoms and this is reflected in changes in miRNA levels. The phenotype induced by expression of the βC1 gene of the betasatellite CLCuMB was the most distinct and consisted of leaf curling, vein swelling, thick green veins and enations and the pattern of changes in miRNA levels was the most distinct.

Conclusions

Our results have identified symptom determinants encoded by begomoviruses and show that developmental abnormalities caused by transient expression of begomovirus genes correlates with altered levels of developmental miRNAs. Additionally, all begomovirus genes were shown to modulate miRNA levels, the first time this has been shown to be the case.  相似文献   

15.
Chilli leaf curl disease is an important constraint to production of chilli peppers ( Capsicum annum L.) across the Indian subcontinent and is caused by begomoviruses in association with betasatellites. Betasatellites are symptom modulating single-stranded DNA satellites associated with the majority of monopartite begomoviruses and are responsible for diseases of many crops including chilli peppers. Here, we have studied the diversity of a betasatellite of chillies in the Punjab and North Western Frontier Province of Pakistan. Sequence analysis of thirteen full-length clones showed that a single species of satellite, Chilli leaf curl betasatellite (ChLCB), is prevalent in chilli throughout the surveyed region. ChLCB has only been identified in Pakistan and infecting chilli. It thus probably represents a chilli adapted satellite. The ChLCBs fall into two groups, the first occurs in the less intensively cultivated north and shows a high level of sequence diversity (relative to the second group), while the second occurs in the southern cotton-growing areas and shows little sequence diversity. Between these two areas there is a region of overlap where both ChLCB types occur. The phylogeographic segregation of ChLCB we attribute to geographic isolation (in the north), leading to divergence and intensive cultivation (in the south), leading to homogenization. However, the lack of diversity (only a single species) bodes well for the prospects of achieving resistance to the disease by either conventional or pathogen-derived strategies.  相似文献   

16.

Background

Emerging whitefly transmitted begomoviruses are major pathogens of vegetable and fibre crops throughout the world, particularly in tropical and sub-tropical regions. Mutation, pseudorecombination and recombination are driving forces for the emergence and evolution of new crop-infecting begomoviruses. Leaf curl disease of field grown radish plants was noticed in Varanasi and Pataudi region of northern India. We have identified and characterized two distinct monopartite begomoviruses and associated beta satellite DNA causing leaf curl disease of radish (Raphanus sativus) in India.

Results

We demonstrate that RaLCD is caused by a complex of two Old World begomoviruses and their associated betasatellites. Radish leaf curl virus-Varanasi is identified as a new recombinant species, Radish leaf curl virus (RaLCV) sharing maximum nucleotide identity of 87.7% with Tomato leaf curl Bangladesh virus-[Bangladesh:2] (Accession number AF188481) while the virus causing radish leaf curl disease-Pataudi is an isolate of Croton yellow vein mosaic virus-[India] (CYVMV-IN) (Accession number AJ507777) sharing 95.8% nucleotide identity. Further, RDP analysis revealed that the RaLCV has a hybrid genome, a putative recombinant between Euphorbia leaf curl virus and Papaya leaf curl virus. Cloned DNA of either RaLCV or CYVMV induced mild leaf curl symptoms in radish plants. However, when these clones (RaLCV or CYVMV) were individually co-inoculated with their associated cloned DNA betasatellite, symptom severity and viral DNA levels were increased in radish plants and induced typical RaLCD symptoms. To further extend these studies, we carried out an investigation of the interaction of these radish-infecting begomoviruses and their associated satellite, with two tomato infecting begomoviruses (Tomato leaf curl Gujarat virus and Tomato leaf curl New Delhi virus). Both of the tomato-infecting begomoviruses showed a contrasting and differential interaction with DNA satellites, not only in the capacity to interact with these molecules but also in the modulation of symptom phenotypes by the satellites.

Conclusion

This is the first report and experimental demonstration of Koch's postulate for begomoviruses associated with radish leaf curl disease. Further observations also provide direct evidence of lateral movement of weed infecting begomovirus in the cultivated crops and the present study also suggests that the exchange of betasatellites with other begomoviruses would create a new disease complex posing a serious threat to crop production.  相似文献   

17.
Weeds and ornamental plants serve as a reservoir for geminiviruses and contribute to their dissemination, genome recombination and/or satellite capture. Ornamental sunflower (Helianthus spp.) plants exhibiting mild leaf curl symptoms were subjected to begomovirus and DNA-satellites isolation. The full-length genome of the isolated begomovirus clone (Od1-A) showed 96.8% nucleotide (nt) sequence identity with mesta yellow vein mosaic virus (MeYVMV; accession no. FR772081) whereas, alphasatellite (Od1-a) and betasatellite (Od1-b) clones showed their highest nt sequence identities at 97.4% and 98.2% with ageratum enation alphasatellite (AEA; accession no. FR772085) and papaya leaf curl betasatellite (PaLCuB; accession. no. LN878112), respectively. The evolutionary relationships, average evolutionary divergence and the recombination events were also inferred. The MeYVMV exhibited 9.5% average evolutionary divergence and its CP and Rep had 9.3% and 12.2%, concomitantly; the alphasatellite and the betasatellite had 8.3% and 5.2%, respectively. The nt substitution rates (site-1 year−1) were found to be 6.983 × 10-04 and 5.702 × 10-05 in the CP and Rep of MeYVMV, respectively. The dN/dS ratio and the Tajima D value of MeYVMV CP demonstrated its possible role in host switching. The absolute quantification of the begomovirus demonstrated that mild symptoms might have a correlation with low virus titer. This is the first identification of MeYVMV and associated DNA-satellites from ornamental sunflower in Pakistan. The role of sequence divergence, recombination and importance of MeYVMV along with DNA-satellites in extending its host range is discussed.  相似文献   

18.
Whitefly transmitted begomoviruses (family Geminiviridae) are the major reason for significant yield losses of dicotyledonous crops in tropics and subtropics. Okra (Abelmoschus esculentus) is one of the important vegetable crops, and leaf curl disease caused by geminiviruses is the most important limiting factor for its production in Pakistan. Here, we report a new species of okra‐infecting begomovirus in south‐eastern region of Pakistan and the name Okra enation leaf curl virus (OELCuV) complex is proposed. This okra enation leaf curl disease complex (OELCuD) in Pakistan is found to be associated with Ageratum conyzoides symptomless alphasatellite (AConSLA). All efforts to clone the betasatellite were unsuccessful. Comprehensive sequence analyses suggest that intermalvaceous recombination between okra and cotton‐infecting begomoviruses resulted in the evolution of the new species. Surprisingly, Bhendi yellow vein mosaic virus (BYVMV) which has not been reported previously from Pakistan is the major parent while Cotton leaf curl Multan virus (CLCuMV) acts as a distant parent of the virus. Comparative recombination analysis also reveals that okra‐infecting begomoviruses from south and north‐western India is causing OELCuD in the Pakistan by recombining with CLCuMV at the Rep (1964–1513 nts). Recombination is common among geminiviruses and recombining of BYVMV and CLCuMV resulted in a new species: OELCuV. To the best of our knowledge, this evolution of a new species of okra‐infecting begomovirus is the first report of intermalvaceous recombination where Rep acts as the target region.  相似文献   

19.
Evaluation of 130 accessions of rapeseed‐mustard germplasm grown at the National Bureau of Plant Genetic Resources, New Delhi, India during the winter season (2011–2012) revealed the occurrence of a leaf curl disease in seven accessions. The occurrence of the disease was observed in another 62 of 525 accessions evaluated during 2012–2013. The association of a monopartite begomovirus and betasatellite was established with the symptomatic plants by whitefly transmission and PCR amplification. The complete nucleotide sequences of the begomovirus (JX270684, 2745 nucleotides), obtained by rolling circle amplification, showed the highest sequence identity (98.1%) with the weed‐infecting begomovirus, Croton yellow vein mosaic virus. Analysis of recombination indicated the probable occurrence of many overlapping inter‐ and intraspecific recombination events. The sequence of betasatellite (JX270685, 1355 nucleotides) showed the highest sequence identity (95.7%) with Croton yellow vein mosaic betasatellite. Begomoviruses were not previously known to naturally infect rapeseed‐mustard. This is the first report of the emergence of a weed‐infecting begomovirus–betasatellite complex in rapeseed‐mustard germplasm in India and raises the concern on utilization of such susceptible germplasm in crop improvement programmes.  相似文献   

20.
Zhang T  Luan JB  Qi JF  Huang CJ  Li M  Zhou XP  Liu SS 《Molecular ecology》2012,21(5):1294-1304
Plant-mediated interactions between herbivorous arthropods and pathogens transmitted by herbivores are important determinants of the population dynamics of both types of organisms in the field. The role of plant defence in mediating these types of tripartite interactions have been recognized but rarely examined especially at the physiological and molecular levels. Our previous work shows that a worldwide invasive whitefly can establish mutualism with the begomovirus Tomato yellow leaf curl China virus (TYLCCNV) via crop plants. Here, we show that TYLCCNV and betasatellite co-infection suppresses jasmonic acid defences in the plant. Impairing or enhancing defences mediated by jasmonic acid in the plant enhances or depresses the performance of the whitefly. We further demonstrate that the pathogenicity factor βC1 encoded in the betasatellite is responsible for the initiation of suppression on plant defences and contributes to the realization of the virus-vector mutualism. By integrating ecological, mechanistic and molecular approaches, our study reveals a major mechanism of the plant-mediated mutualism between a virus and its vector. As the test plant is an important economic crop, the results also have substantial implications for developing novel strategies for management of crop viruses and the insect vectors associated with them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号