首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
On the basis of data gained by autopsy the frequency of thrombotic and thromboembolic complications (TTK) was investigated by correlation analysis in unselected malignant tumour diseases and in malignant tumour diseases with tumour endocarditis (TE). The following things could be detected: 1. No increase of TTK in malignant tumour diseases compared with the total material, 2. A significant increase of TTK in tumours with TE, 3. A significant increase of TTK with an increasing histological tumour differentiation and an increasing inflammatory current reaction of the tumour, and 4. Parallel behaviour of tumours with TTK and those with TE concerning primary tumours. TTK was interpreted as the cause of an abnormally enhanced tendency of blood coagulation on the basis of an immunocomplex disease, because: 1. The coagulation system is being activated by circulating immunocomplexes, 2. Circulating immunocomplexes will increase with tumour parameters, differentiation, and current reaction, and 3. Frequency of TTK and TE will increase with the same parameters.  相似文献   

3.
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. However, the molecular mechanisms underlying HGSOC development, progression, chemotherapy insensitivity and resistance remain unclear. Two independent GEO datasets, including the gene expression profile of primary ovarian carcinoma and normal controls, were analyzed to identify genes related to HGSOC development and progression. A KEGG pathway analysis of the differentially expressed genes (DEGs) revealed that the cell cycle pathway was the most enriched pathway, among which TTK protein kinase (TTK) was the only gene with a clinical-grade inhibitor that has been investigated in a clinical trial but had not been studied in HGSOC. TTK was also upregulated in cisplatin-resistant ovarian cancer cells from two other datasets. TTK is a regulator of spindle assembly checkpoint signaling, playing an important role in cell cycle control and tumorigenesis in various cancers. However, the function and regulatory mechanism of TTK in HGSOC remain to be determined. In this study, we observed TTK upregulation in patients with HGSOC. High TTK expression was related to a poor prognosis. Genetic and pharmacological inhibition of TTK impeded the proliferation of ovarian cancer cells by disturbing cell cycle progression and increasing apoptosis. TTK silencing increased cisplatin sensitivity by activating the mammalian target of rapamycin (mTOR) complex to further suppress cisplatin-induced autophagy in vitro. In addition, the enhanced sensitivity was partially diminished by rapamycin-mediated inhibition of mTOR in TTK knockdown cells. Furthermore, TTK knockdown increased the toxicity of cisplatin in vivo by decreasing autophagy. These findings suggest that the administration of TTK inhibitors in combination with cisplatin may lead to improved response rates to cisplatin in patients with HGSOC presenting high TTK expression. In summary, our study may provide a theoretical foundation for using the combination therapy of cisplatin and TTK inhibitors as a treatment for HGSOC in the future.Subject terms: Chemotherapy, Targeted therapies, Autophagy, Diagnostic markers  相似文献   

4.
We have isolated the full-length sequence for a unique human kinase, designated TTK. TTK was initially identified by screening of a T cell expression library with anti-phosphotyrosine antibodies. The kinases most closely related to TTK are the SPK1 serine, threonine and tyrosine kinase, the Pim1, PBS2, and CDC2 serine/threonine kinases, and the TIK kinase which was also identified through screening of an expression library with anti-phosphotyrosine antibodies. However, the relationships are distant with less than 25% identity. Nevertheless, TTK is highly conserved throughout phylogeny with hybridizing sequences being detected in mammals, fish, and yeast. TTK mRNA is present at relatively high levels in testis and thymus, tissues which contain a large number of proliferating cells, but is not detected in most other benign tissues. Freshly isolated cells from most malignant tumors assessed expressed TTK mRNA. As well, all rapidly proliferating cell lines tested expressed TTK mRNA. Escherichia coli expressing the complete kinase domain of TTK contain markedly elevated levels of phosphoserine and phosphothreonine as well as slightly increased levels of phosphotyrosine. Taken together, these findings suggest that expression of TTK, a previously unidentified member of the family of kinases which can phosphorylate serine, threonine, and tyrosine hydroxyamino acids, is associated with cell proliferation.  相似文献   

5.
Dou Z  Sawagechi A  Zhang J  Luo H  Brako L  Yao XB 《Cell research》2003,13(6):443-449
Entry into mitosis is driven by signaling cascades of mitotic kinases. Our recent studies show that TTK, a kinetochore-associated protein kinase, interacts with CENP-E, a mitotic kinesin located to corona fiber of kinetochore. Using immunoelectron microscopy, here we show that TTK is present at the nuclear pore adjacent complex of interphase HeLa cells. Upon nuclear envelope fragmentation, TTK targets to the outermost region of the developing kinetochores of monoorient chromosome as well as to spindle poles. After stable attachment, throughout chromosome congression, TTK is a constituent of the corona fibers, extending up to 90 nm away from the kinetochore outer plate. Upon metaphase alignment, TTK departs from the kinetochore and migrates toward the centrosomes. Taken together, this evidence strongly supports a model in which TTK functions in spindle checkpoint signaling cascades at both kinetochore and centrosome.  相似文献   

6.
Hyperphosphorylated tau protein is known to be a major component of the paired helical filaments (PHFs) that accumulate in the brain of Alzheimer's patients. The kinase that phosphorylated Ser-208 and Ser-210 in PHF-tau had remained unknown. We used anti-pS208 and anti-pS210 antibodies and Western blots to confirm that the tau-tubulin kinase (TTK) phosphorylates tau at Ser-208 and at Ser-210. Using partial amino acid sequences of purified bovine brain TTK, a mouse cDNA of TTK was isolated and the sequence was determined. Its 963 bp coding region is composed of 320 amino acids and encodes a 36 kDa protein indistinguishable in size from authentic bovine brain TTK. Our immunoblot analysis demonstrated that TTK is ubiquitously distributed in the rat tissues, and that it is developmentally regulated in the rat brain.  相似文献   

7.
8.
9.
CHK2/hCds1 plays important roles in the DNA damage-induced cell cycle checkpoint by phosphorylating several important targets, such as Cdc25 and p53. To obtain a better understanding of the CHK2 signaling pathway, we have carried out a yeast two-hybrid screen to search for potential CHK2-interacting proteins. Here, we report the identification of the mitotic checkpoint kinase, TTK/hMps1, as a novel CHK2-interacting protein. TTK/hMps1 directly phosphorylates CHK2 on Thr-68 in vitro. Expression of a TTK kinase-dead mutant, TTK(D647A), interferes with the G(2)/M arrest induced by either ionizing radiation or UV light. Interestingly, induction of CHK2 Thr-68 phosphorylation and of several downstream events, such as cyclin B1 accumulation and Cdc2 Tyr-15 phosphorylation, is also affected. Furthermore, ablation of TTK expression using small interfering RNA results not only in reduced CHK2 Thr-68 phosphorylation, but also in impaired growth arrest. Our results are consistent with a model in which TTK functions upstream from CHK2 in response to DNA damage and suggest possible cross-talk between the spindle assembly checkpoint and the DNA damage checkpoint.  相似文献   

10.
vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2   总被引:1,自引:0,他引:1  
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubule and the kinetochore. Our recent ultrastructural studies demonstrated a dynamic distribution of TTK, from the kinetochore to the centrosome, as cell enters into anaphase. Here, we show that a centrosomal protein TACC2 is phosphorylated in mitosis by TTK signaling pathway. TACC2 was pulled down by wild type TTK but not kinase death mutant, suggesting the potential phosphorylation-mediated interaction between these two proteins. Our immunofluorescence studies revealed that both TTK and TACC2 are located to the centrosome. Interestingly, expression of kinase death mutant of TTK eliminated the centrosomal localization of TACC2 but not other centrosomal proteins such as gamma-tubulin and NuMA, a phenotype seen in TTK-depleted cells. In these centrosomal TACC2-liberated cells, chromosomes were lagging and mis-aligned. In addition, the distance between two centrosomes was markedly reduced, suggesting that centrosomal TACC2 is required for mitotic spindle maintenance. The inter-relationship between TTK and TACC2 established here provides new avenue to study centrosome and spindle dynamics underlying cell divisional control.  相似文献   

11.
12.
TTK kinase was identified by in-house siRNA screen and pursued as a tractable, novel target for cancer treatment. A screening campaign and systematic optimization, supported by computer modeling led to an indazole core with key sulfamoylphenyl and acetamido moieties at positions 3 and 5, respectively, establishing a novel chemical class culminating in identification of 72 (CFI-400936). This potent inhibitor of TTK (IC50 = 3.6 nM) demonstrated good activity in cell based assay and selectivity against a panel of human kinases. A co-complex TTK X-ray crystal structure and results of a xenograft study with TTK inhibitors from this class are described.  相似文献   

13.
14.
Centrosome amplification (CA) amongst particular breast cancer subtypes (Her2+ subtype) is associated with genomic instability and aggressive tumor phenotypes. However, changes in signaling pathways associated with centrosome biology have not been fully explored in subtype specific models. Novel centrosome regulatory genes that are selectively altered in Her2+ breast cancer cells are of interest in discerning why CA is more prevalent in this subtype. To determine centrosome/cell cycle genes that are altered in Her2+ cells that display CA (HCC1954) versus non-tumorigenic cells (MCF10A), we carried out a gene microarray. Expression differences were validated by real-time PCR and Western blotting. After the microarray validation, we pursued a panel of upregulated and downregulated genes based on novelty/relevance to centrosome duplication. Functional experiments measuring CA and BrdU incorporation were completed after genetic manipulation of targets (TTK, SGOL1, MDM2 and SFRP1). Amongst genes that were downregulated in HCC1954 cells, knockdown of MDM2 and SFRP1 in MCF10A cells did not consistently induce CA or impaired BrdU incorporation. Conversely, amongst upregulated genes in HCC1954 cells, knockdown of SGOL1 and TTK decreased CA in breast cancer cells, while BrdU incorporation was only altered by SGOL1 knockdown. We also explored the Kaplan Meier Plot resource and noted that MDM2 and SFRP1 are positively associated with relapse free survival in all breast cancer subtypes, while TTK is negatively correlated with overall survival of Luminal A patients. Based on this functional screen, we conclude that SGOL1 and TTK are important modulators of centrosome function in a breast cancer specific model.  相似文献   

15.
In the present study, the molecular dynamics simulation technique is employed to investigate the hydrogen abstraction possibility from sugar of DNA in two designed complexes of copper-based chemical nuclease [Cu(BPA)](2+) bis(2-pyridylmethyl) amine (BPA) or [Cu(IDB)](2+) N,N-bis(2-benzimidazolylmethyl) amine (IDB) bound to the zinc finger protein Tramtrack (TTK). The simulated results show that each of the designed complexes can form a stable conformation within 30 ns of simulation time with the substrate OOH(-) and an 18-base pair (bp) DNA segment and is located in the major groove of the DNA segment. The active terminal O atom of the OOH(-) substrate is found in close proximity to the target C2'H, C3'H, C4'H or C5'H proton of the DNA in TTK + [Cu(BPA)OOH](+) + DNA or TTK + [Cu(IDB)OOH](+) + DNA complex, which is crucial to propose the hydrogen abstraction possibility that is responsible for the DNA cleavage. The positions of copper-based chemical nucleases bound to TTK may substantially influence the hydrogen abstraction possibility. The structures and sizes of ligands in copper-based nucleases are also found to have influence on the order of difficulty of the hydrogen abstraction from the sugars of DNA.  相似文献   

16.
17.
18.
19.
20.
A simple method of cryopreservation (TTK) of lymphocytes is presented. The functional properties of TTK-lymphocytes are examined by the lymphocyte toxicity micro test and in the mixed lymphocyte culture (MLC). 51Cr-release technique is performed as a measure for reversible and irreversible cell damages in the course of the Cryopreservation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号