首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA从头合成技术是指以寡核苷酸链为起始的合成DNA片段的技术,其不断进步是合成生物学快速发展的基石之一。常规使用的连接介导的DNA合成技术和PCR介导的DNA合成技术日益成熟,精确合成长度已经达到0.5—1kb。微阵列介导的DNA合成技术不断发展,其低成本、高通量的特点吸引了人们的注意;而酵母体内DNA合成技术的成功探索也为体外DNA合成提供了一种补偿方法。DNA合成在优化密码子用于异源表达、构建异源代谢途径、合成人工基因组以及合成减毒病毒用于疫苗研制等方面有广泛应用。综述了DNA从头合成技术的研究进展,并介绍了DNA合成的前沿应用。  相似文献   

2.
The synthesis of histones during lytic infection of BSC-1 (African Green Monkey kidney) cells with SV40 has been investigated. The synthesis of all five classes of histones was stimulated, and all classes appeared to be stimulated to the same extent. The increase in rate of histone synthesis in response to SV40 infection was detectable several hours before SV40 DNA synthesis was measureable, and the rate of histone synthesis decreased at a time when SV40 DNA synthesis was occuring at a maximal or relatively high rate. In addition, the changes in rates of histone synthesis did not correlate well with the rates of host DNA synthesis during infection. Thus it appears that DNA synthesis and histone synthesis may not be strictly coupled in SV40 infected cells.  相似文献   

3.
A simultaneous increase is found in the level of protein synthesis and the major regulatory glycolytic enzyme, phosphofructokinase (PFK), in early phytohemagglutinin exposure of human lymphocytes. The induction of DNA synthesis is demonstrated to be a much later event. This indicates that the increase of glycolysis in mitogen-stimulated cells precedes cell proliferation, but occurs simultaneously with a general increase in protein synthesis. Chemical inhibitors are used to clarify the interrelationship of protein synthesis, glycolytic enzymes levels, and DNA synthesis. Inhibition of protein synthesis with cycloheximide in the mitogen-exposed lymphocytes prevents any increase in PFK levels, implicating protein synthesis as a cause for the increased glycolysis. Cycloheximide also prevents entry into S phase in mitogen-stimulated lymphocytes which may be due to inhibition of the synthesis of enzymes necessary for DNA synthesis, such as DNA polymerase. Aphidicolin, a specific DNA polymerase inhibitor, is found to have no effect on the increase in protein synthesis and PFK levels that precedes DNA synthesis. The increase in glycolysis in mitogen-stimulated lymphocytes occurs simultaneously with, and is dependent upon, increased protein synthesis, and precedes DNA synthesis and lymphocyte proliferation; thus, the high glycolytic rate of mitogen-stimulated cells is not merely a secondary manifestation of rapid cell proliferation as has been previously reported.  相似文献   

4.
N A Berger  G W Sikorski 《Biochemistry》1981,20(12):3610-3614
Synthesis of DNA and poly(adenosine diphosphoribose) [poly(ADPR)] was examined in permeabilized xeroderma pigmentosum lymphoblasts (XP3BE) before and after UV irradiation and in the presence and absence of Micrococcus luteus UV endonuclease. M. luteus UV endonuclease had no effect on the level of DNA or poly(ADPR) synthesis in control, unirradiated cells. UV irradiation caused a decrease in replicative DNA synthesis without any significant change in poly(ADPR) synthesis. In UV-irradiated cells treated with M. luteus UV endonuclease, DNA synthesis was restored to a level slightly greater than in the unirradiated control cells, and poly(ADPR) synthesis increased by 2- to 4-fold. Time--course studies showed that the UV endonuclease dependent poly(ADPR) synthesis preceded the endonuclease-dependent DNA synthesis. Inhibition of endonuclease-dependent poly(ADPR) synthesis with 3-aminobenzamide, 5-methylnicotinamide, or theophylline produced a partial inhibition of the endonuclease-dependent DNA synthesis. Conversely, inhibition of the endonuclease-dependent DNA synthesis with dideoxythymidine triphosphate, phosphonoacetic acid, or aphidicolin had no effect on the endonuclease-dependent poly(ADPR) synthesis. These studies show that stimulation of poly(ADPR) synthesis in UV-irradiated cells occurs subsequent to the DNA strand breaks created by the specific action of the UV endonuclease on UV-irradiated DNA. The effect of the inhibitors of poly(ADPR) synthesis in UV-irradiated cells indicates that the endonuclease-stimulated DNA synthesis is dependent in part on the prior synthesis of poly(ADPR).  相似文献   

5.
Incorporation of (14C)choline and (3H)myo-inositol into the total lipid fraction, incorporation of (14C)acetate into the sterol fraction and incorporation of (3H)thymidine into DNA were studied in human lymphocyte cultures. Concanavalin A induced an increase in the incorporation of these labels with the following features: (a) Phospholipid synthesis was increased promptly. The lag time for the increase in sterol synthesis and DNA synthesis were 5 hours and 27 hours respectively; (b) The increase in phospholipid synthesis and sterol synthesis was proportional to ConA concentration initially. Cells treated with a high concentration of ConA showed very low levels of DNA synthesis; (c) The increase in phospholipid synthesis could be abolished immediately by alpha-Methyl-Mannoside. alpha-Methyl-Mannoside blunted but did not abolish the increase in sterol synthesis. alpha-Methyl-Mannoside enhanced DNA synthesis of those cells which had been treated by a high concentration of ConA; and (d) Selective inhibition of sterol synthesis with 25-hydroxycholesterol did not prevent the increase in phospholipid synthesis, but it blocked the increase in DNA synthesis. Supplement of LDL, HDL or total lipoproteins to lymphocyte cultures was effective in preventing the inhibition of DNA synthesis by 25-hydroxy-cholesterol. These results suggest that in lymphocyte activation by ConA phospholipid synthesis, sterol synthesis and DNA synthesis were sequentially increased. The rate of cellular commitment to mitogenesis was proportional to ConA concentrations. High concentrations of ConA arrested the cell growth at a postcommitment point in the G1 phase. Enhanced phospholipid synthesis was a precommitment event. Enhanced sterol synthesis was a postcommitment event and reflected the requirement of an increased cholesterol supply for the passage of cell growth through G1.  相似文献   

6.
Regulation of thymidine kinase synthesis in human cells   总被引:18,自引:0,他引:18  
  相似文献   

7.
Histone messenger RNA has been identified in CV-1 monkey kidney cells and its synthesis during the simian virus 40 (SV40) productive cycle has been correlated with the synthesis of cellular DNA and viral DNA. In cultures of CV-1 cells that have reached confluence, infection with SV40/5 (a high-yield clone of SV40) promotes an increase in the rate of cellular DNA synthesis followed by a decline. During this decline the rate of viral DNA synthesis continues to rise and eventually surpasses that of cellular DNA.The synthesis of histone mRNA rises concomitantly with the increase in the synthesis of cellular DNA. This occurs in a fashion similar to that observed when confluent CV-1 cultures are stimulated by the addition of fresh serum to the growth medium. However, whereas in cells stimulated with serum the synthesis of histone mRNA closely parallels that of cellular DNA, in cells infected with SV40, histone mRNA synthesis continues at a high rate even after the decline of cellular DNA synthesis. The rate of histone mRNA synthesis thus appears to he coupled to the total (cellular plus viral) DNA synthesis and not to the synthesis of the host DNA alone. The high rate of synthesis of the F1 histone at late times after infection suggests that histone genes are transcribed co-ordinately.  相似文献   

8.
Joe L. Key 《Plant physiology》1966,41(8):1257-1264
The effects of several base analogues and cycloheximide on RNA synthesis, protein synthesis, and cell elongation were studied in excised soybean hypocotyl. None of the pyrimidine analogues tested affected growth or protein synthesis; only 5-fluorouracil appreciably inhibited RNA synthesis. 8-Azaguanine and 6-methylpurine markedly inhibited RNA and protein synthesis and cell elongation. Cycloheximide effectively inhibited both cell elongation and protein synthesis.The results show that 5-fluorouracil selectively inhibited ribosomal and soluble RNA synthesis without affecting the synthesis of D-RNA. These results indicate that the requirement for RNA synthesis to support continued protein synthesis and cell elongation is restricted to the synthesis of D-RNA.5-Fluorouracil was incorporated into all classes of RNA in a form believed to be 5-fluorouridylic acid.Cycloheximide markedly inhibited the accumulation of ribosomal RNA, but the results indicate that CH did not inhibit, per se, the synthesis of ribosomal RNA. The accumulation of newly synthesized D-RNA was only slightly affected by cycloheximide. These results show that the inhibition of cell elongation by cycloheximide correlates with the inhibition of protein synthesis, but not with the effect on RNA metabolism.  相似文献   

9.
Using an auxotrophic strain of Saccharomyces cerevisiae, we examined the kinetics of ribonucleic acid (RNA) synthesis following inhibition of protein synthesis caused by amino acid starvation or cycloheximide. Removal of a required amino acid immediately stopped net protein synthesis. After a brief lag, RNA synthesis also ceased. Cycloheximide, a ribosome-inhibiting drug, also immediately halted net protein synthesis. Again RNA synthesis stopped after a brief lag. Although cycloheximide and amino acid starvation affect different steps in protein biosynthesis, both inhibited RNA synthesis in identical fashion. This indicates that amino acids do not play a unique role in the control of RNA production in rapidly growing yeast; rather, it suggests that RNA synthesis is responsive to the overall rate of protein synthesis itself.  相似文献   

10.
The cre(2C) hairpin is a cis-acting replication element in poliovirus RNA and serves as a template for the synthesis of VPgpUpU. We investigated the role of the cre(2C) hairpin on VPgpUpU synthesis and viral RNA replication in preinitiation RNA replication complexes isolated from HeLa S10 translation-RNA replication reactions. cre(2C) hairpin mutations that block VPgpUpU synthesis in reconstituted assays with purified VPg and poliovirus polymerase were also found to completely inhibit VPgpUpU synthesis in preinitiation replication complexes. Surprisingly, blocking VPgpUpU synthesis by mutating the cre(2C) hairpin had no significant effect on negative-strand synthesis but completely inhibited positive-strand synthesis. Negative-strand RNA synthesized in these reactions immunoprecipitated with anti-VPg antibody and demonstrated that it was covalently linked to VPg. This indicated that VPg was used to initiate negative-strand RNA synthesis, although the cre(2C)-dependent synthesis of VPgpUpU was inhibited. Based on these results, we concluded that the cre(2C)-dependent synthesis of VPgpUpU was required for positive- but not negative-strand RNA synthesis. These findings suggest a replication model in which negative-strand synthesis initiates with VPg uridylylated in the 3' poly(A) tail in virion RNA and positive-strand synthesis initiates with VPgpUpU synthesized on the cre(2C) hairpin. The pool of excess VPgpUpU synthesized on the cre(2C) hairpin should support high levels of positive-strand synthesis and thereby promote the asymmetric replication of poliovirus RNA.  相似文献   

11.
Based on evidence that 50% of herpes simplex 1 DNA is transcribed in HEp-2 cells in the absence of protein synthesis we examined the order and rates of synthesis of viral polypeptides in infected cells after reversal of cycloheximide- or puromycin-mediated inhibition of protein synthesis. These experiments showed that viral polypeptides formed three sequentially synthesized, coordinately regulated groups designated alpha, beta, and gamma. Specifically: (i) The alpha group, containing one minor structural and several nonstructural polypeptides, was synthesized at highest rates from 3 to 4 h postinfection in untreated cells and at diminishing rates thereafter. The beta group, also containing minor structural and nonstructural polypeptides, was synthesized at highest rates from 5 to 7 h and at decreasing rates thereafter. The gamma group containing major structural polypeptides was synthesized at increasing rates until at least 12 h postinfection. (ii) The synthesis of alpha polypeptides did not require prior infected cell protein synthesis. In contrast, the synthesis of beta polypeptides required both prior alpha polypeptide synthesis as well as new RNA synthesis, since the addition of actinomycin D immediately after removal of cycloheximide precluded beta polypeptide synthesis. The function supplied by the alpha polypeptides was stable since interruption of protein synthesis after alpha polypeptide synthesis began and before beta polypeptides were made did not prevent the immediate synthesis of beta polypeptides once the drug was withdrawn. The requirement of gamma polypeptide synthesis for prior synthesis of beta polypeptides seemed to be similar to that of beta polypeptides for prior synthesis of the alpha group. (iii) The rates of synthesis of alpha polypeptides were highest immediately after removal of cycloheximide and declined thereafter concomitant with the initiation of beta polypeptide synthesis; this decline in alpha polypeptide synthesis was less rapid in the presence of actinomycin D which prevented the appearance of beta and gamma polypeptides. The decrease in rates of synthesis of beta polypeptides normally occurring after 7 h postinfection was also less rapid in the presence of actinomycin D than in its absence, whereas ongoing synthesis of gamma polypeptides at this time was rapidly reduced by actinomycin D. (iv) Inhibitors of DNA synthesis (cytosine arabinoside or hydroxyurea) did not prevent the synthesis of alpha, beta, or gamma polypeptides, but did reduce the amounts of gamma polypeptides made.  相似文献   

12.
The activation of cell cycle regulators at the G1/S boundary has been linked to the cellular protein synthesis rate. It is conceivable that regulatory mechanisms are required to allow cells to coordinate the synthesis of other macromolecules with cell cycle progression. The availability of highly synchronized cells and flow cytometric methods facilitates investigation of the dynamics of lipid synthesis in the entire cell cycle of the heterotrophic dinoflagellate Crypthecodinium cohnii. Flow cytograms of Nile red-stained cells revealed a stepwise increase in the polar lipid content and a continuous increase in neutral lipid content in the dinoflagellate cell cycle. A cell cycle delay at early G1, but not G2/M, was observed upon inhibition of lipid synthesis. However, lipid synthesis continued during cell cycle arrest at the G1/S transition. A cell cycle delay was not observed when inhibitors of cellulose synthesis and fatty acid synthesis were added after the late G1 phase of the cell cycle. This implicates a commitment point that monitors the synthesis of fatty acids at the late G1 phase of the dinoflagellate cell cycle. Reduction of the glucose concentration in the medium down-regulated the G1 cell size with a concomitant forward shift of the commitment point. Inhibition of lipid synthesis up-regulated cellulose synthesis and resulted in an increase in cellulosic contents, while an inhibition of cellulose synthesis had no effects on lipid synthesis. Fatty acid synthesis and cellulose synthesis are apparently coupled to the cell cycle via independent pathways.  相似文献   

13.
Inhibition of phospholipid synthesis in Escherichia coli by either cerulenin treatment or glycerol starvation of a glycerol-auxotrophic mutant resulted in a concomitant block of murein synthesis. The intracellular pool of cytoplasmic and lipid-linked murein precursors was not affected by an inhibition of phospholipid synthesis, nor was the activity of the penicillin-binding proteins. In addition, a decrease in the activity of the two lipoprotein murein hydrolases, the lytic transglycosylases A and B, could not be demonstrated. The indirect inhibition of murein synthesis by cerulenin resulted in a 68% decrease of trimeric muropeptide structures, proposed to represent the attachment points of newly added murein. Importantly, inhibition of phospholipid synthesis also inhibited O-antigen synthesis with a sensitivity and kinetics similar to those of murein synthesis. It is concluded that the step common for murein and O-antigen synthesis, the translocation of the respective bactoprenolphosphate-linked precursor molecules, is affected by an inhibition of phospholipid synthesis. Consistent with this assumption, it was shown that murein synthesis no longer depends on ongoing phospholipid synthesis in ether-permeabilized cells. We propose that the assembly of a murein-synthesizing machinery, a multienzyme complex consisting of murein hydrolases and synthases, at specific sites of the membrane, where integral membrane proteins such as RodA and FtsW facilitate the translocation of the lipid-linked murein precursors to the periplasm, depends on ongoing phospholipid synthesis. This would explain the well-known phenomenon that both murein synthesis and antibiotic-induced autolysis depend on phospholipid synthesis and thereby indirectly on the stringent control.  相似文献   

14.
The major coat protein of the bacteriophage f1 is synthesized during infection of Escherichia coli and becomes tightly associated with the host membrane. This synthesis was studied in conjunction with the strain BB26-36, a mutant defective in phospholipid synthesis, to investigate basic questions concerning membrane protein and phospholipid synthesis. Coat protein synthesis is decreased in the absence of net phospholipid synthesis. The coat protein produced under these conditions is still found tightly associated with the membrane. Resumption of phospholipid synthesis leads to an increase in the synthesis and accumulation of the coat protein. Therefore, a correlation between coat protein and phospholipid synthesis seems to exist. However, the packaging of phage deoxyribonucleic acid into phage particles proceeds in the absence of phospholipid synthesis, and the number of phage particles produced appears to depend only on the amount of coat protein in the membrane.  相似文献   

15.
16.
Characteristics of inorganic pyrophosphate synthesis from inorganic orthophosphate were examined in chromatophores of Rhodospirillum rubrum. The application of an ADP-glucose pyrophosphorylase-trapping system has shown in an unequivocal fashion that pyrophosphate is a product of a light-dependent reaction utilizing P(i) as the substrate. Only very limited pyrophosphate synthesis takes place in the dark. The rates of synthesis of both ATP and pyrophosphate were studied under conditions in which the membrane-bound adenosine triphosphatase and pyrophosphatase activities would normally make these substances unstable. The maximum rate of pyrophosphate synthesis was 25% of that for ATP synthesis, with maximum activation of pyrophosphate synthesis occurring at a lower light-intensity than that required for ATP synthesis. As a result, at low light-intensity the rate of pyrophosphate formation approached that of ATP. Maximal rates of synthesis of both pyrophosphate and ATP were attained only on the addition of an exogenous reducing agent. Conditions for optimum pyrophosphate synthesis required about one-half of the concentration of the reductant required for maximum ATP synthesis. Consistent with previous reports, oligomycin inhibited ATP synthesis, but had little influence on the rate of pyrophosphate synthesis. In membrane particles that retained pyrophosphatase activity but were treated to remove adenosine triphosphatase activity and the ability to photophosphorylate ADP, oligomycin stimulated light-dependent pyrophosphate synthesis by nearly 250%. The influence of Mg(2+) concentration, pH and various inhibitors and uncouplers on pyrophosphate synthesis was studied. The results are discussed with respect to the mechanism and function of electron-transport-coupled energy conservation in R. rubrum chromatophores.  相似文献   

17.
Using the harvesting method of synchronizing L cells, the relationship of RNA synthesis of DNA replication was studied by the use of selective inhibitors of RNA synthesis such as actinomycin D and chromomycin succinate. The synthesis of the early replicating DNA fraction is a process sensitive to the inhibition of RNA synthesis during the G1 period. The synthesis of early replicating DNA was inhibited by chromomycin succinate without affecting the initation of DNA synthesis. However, actinomycin D inhibited the synthesis of early replicating DNA and prevented the initiation of DNA synthesis in 50% of the synchronized cells. However, it was found that the continued synthesis of RNA during the S period is not essential for the synthesis of late replicating DNA. In addition to this specific response of DNA synthesis to the inhibitors of RNA synthesis, another function of early and late replicating DNA was determined relative to the cell viability. Cells synthesizing early replicating DNA were killed more efficiently by chromomycin than at other stages of the cell cycle. This indicates that the early replicating DNA unit plays a more important role in cell reproduction than the late replicating DNA unit.  相似文献   

18.
Histone synthesis is not coupled to the replication of adenovirus DNA   总被引:1,自引:0,他引:1  
Histone synthesis decreases approximately in parallel with the decrease in cellular DNA synthesis when KB cell monolayers are productively infected with adenovirus type 2 and does not occur in coordination with the later surge of viral DNA synthesis. The synthesis of histones is not, therefore, required for all replicative DNA synthesis in the nuclei of mammalian cells.  相似文献   

19.
The effects of formamidoxime and hydroxyurea over a 105 concentration range were studied on macromolecular synthesis in E. coli, L5178Y mouse leukemic cells, isolated rat liver mitochondria and isolated rat cerebral cortex mitochondria. In E. coli 2 mg per ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 20% and 17%, DNA synthesis by 91% and 96%, protein synthesis by 54% and 60% and lipopolysaccharide synthesis by 65% and 48%. In L5178Y mouse leukemic cells 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 41% and 24%, DNA synthesis by 90% and 97%, protein synthesis by 59% and 44% and glycoprotein synthesis by 83% and 50%. In isolated rat liver mitochondria 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 43% and 52%, DNA synthesis by 42% and 56% and protein synthesis by 18% and 30%. Glycoprotein synthesis was not affected. In isolated rat cerebral cortex mitochondria 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 50% and 44%, DNA synthesis by 59% and 66% and protein synthesis by 48% and 40%. Glycoprotein synthesis again was not affected. Lower concentrations of the drugs produced less inhibition of macromolecular synthesis in each of the systems.  相似文献   

20.
The capacity of IL-1-beta, TNF, and IFN-gamma to stimulate platelet-activating factor (PAF) synthesis by human monocytes is examined in our report. All three cytokines induced PAF synthesis in a novel biphasic pattern with peaks of PAF synthesis 1 to 2 and 6 to 8 h after stimulation of the monocytes. In contrast, calcium ionophore A23187 elicited a single peak of early PAF synthesis. PAF in the early peak was largely retained intracellularly whereas PAF in the late peak was largely released into culture fluids. Combinations of cytokines were subadditive or antagonistic in inducing PAF synthesis. Cycloheximide inhibited the late peak of PAF synthesis indicating that protein synthesis is required for synthesis of the phospholipid PAF. Specific antibodies to TNF or IL-1-beta inhibited the late peak of PAF synthesis induced by IFN-gamma indicating that late PAF synthesis is dependent on cytokine synthesis. The quantities of PAF produced by cytokine-activated monocytes are sufficient to activate human monocytes. Thus, these studies suggest that PAF may mediate in part monocyte activation by cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号