首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many genera of arvicolid rodents (voles) contain species that spend a considerable amount of time underground. Incisors provide a considerable effort in the digging process and a difference in the enamel microstructure of incisors is expected between species that spend most of their life above ground and those who have greater specializations for a subterranean habitat. The ratio between the thicknesses of the two layers composing the enamel of the incisors has proved to be an effective proxy to infer fossorial activity of extinct forms of Arvicola but this ratio exhibited no phylogenetic signal (although lifestyle was in a greater extent related to phylogeny). We were able to infer ancestral lifestyles (of extinct populations and of nodes of the phylogeny) from enamel morphologies. Inclusion of fossils did not solve the uncertainties associated with the lifestyle for the last common ancestor of extant Arvicola species and it did not change the inferred lifestyle of several other, less inclusive, clades.  相似文献   

2.
In the subfamily Arvicolinae (Cricetidae, Rodentia) the satellite DNA Msat-160 has been so far described in only some species from the genus Microtus and in one species from another genus, Chionomys nivalis. Here we cloned and characterized this satellite in two new arvicoline species, Microtus (Terricola) savii and Arvicola amphibius (terrestris). We have also demonstrated, by PCR and FISH, its existence in the genomes of several other species from both genera. These results suggest that Msat-160 already occurred in the common ancestor of the four genera/subgenera of Arvicolinae (Microtus, Chionomys, Arvicola, and Terricola). In Arvicola and Terricola, Msat-160 showed the basic monomer length of 160 bp, although a higher-order repeat (HORs) of 640 bp could have been probably replacing the original monomeric unit in A. a. terrestris. Msat-160 was localized by FISH mostly on the pericentromeric regions of the chromosomes, but the signal intensity and the number of carrier chromosomes varied extremely even between closely related species, resulting in a species-specific pattern of chromosomal distribution of this satellite. Such a variable pattern most likely is a consequence of a rapid amplification and contraction of particular repeats in the pericentromeric regions of chromosomes. In addition, we proposed that the rapid variation of pericentromeric repeats is strictly related to the prolific species radiation and diversification of karyotypes that characterize Arvicolinae lineage. Finally, we performed phylogenetic analysis in this group of related species based on Msat-160 that results to be in agreement with previously reported phylogenies, derived from other molecular markers.  相似文献   

3.
The relationship between home range and reproductive status of water voles (Arvicola amphibius) was studied by radio-tracking on an island off the coast of northern Norway in 2006–2009. The aim was to test assumptions about the species’ social structure relative to other microtines. Juveniles used fairly small ranges (about 400 m²), with no difference between males and females. Subadults, overwintered voles in April, had ranges similar to juveniles. Reproductively active males (mean 2774.0 m²) increased their range seven-fold relative to juvenile males, with ranges on average 3.3 times larger than adult females (mean 848.3 m²), which also expanded their range. Most litters were born in May and June, and as reproduction ceased in July adult males reduced their range whilst females did not. Body mass or year did not influence home range size. Overlap of home ranges varied, but could be extensive in both adult males and females. The water vole had a social structure similar to some Microtus species, but females appeared to be non-territorial and males perhaps conditioned territorial and non-territorial.  相似文献   

4.
5.
The mole vole subgenus Ellobius is currently considered to include three species: Ellobius talpinus (distributed from SE Europe and Turkmenistan through Kazakhstan to SW Siberia), Ellobius alaicus (S Tianshan, Pamir-Alay) and Ellobius tancrei (East and West Central Asia, from the Amu-Darya to Mongolia and N China). A study focusing on the genetic variation in Ellobius from Mongolia was conducted using one mitochondrial and three nuclear markers. Two divergent allopatric lineages endemic to East Central Asia were revealed. The first lineage occurs from Dzungaria eastwards to central Mongolia and represents E. tancrei sensu stricto. The second lineage is found in East Gobi only and corresponds to a taxon described as Ellobius orientalis, which has been traditionally treated as a subspecies of E. tancrei. However, molecular and chromosome data indicate that orientalis is related not to E. tancrei but to E. talpinus, which is separated from the former by a distribution gap of ~2,000 km. The taxonomic status of the East Gobi mole vole is ambiguous, and its genetic distance from E. talpinus s. str. falls into the range characteristic for closely related vole species or semi-species. According to molecular estimates, the two taxa have been isolated since the late Middle Pleistocene. A similar divergence is observed between the East and West Central Asian lineages of E. tancrei. E. alaicus is placed as sister to the latter rendering E. tancrei sensu lato paraphyletic. The revealed phylogeographic pattern implies that East Central Asia was colonized by mole voles through multiple eastward dispersal events.  相似文献   

6.
Identification of rodents is very difficult mainly due to high similarities in morphology and controversial taxonomy. In this study, mitochondrial cytochrome oxidase subunit I (COI) was used as DNA barcode to identify the Murinae and Arvicolinae species distributed in China and to facilitate the systematics studies of Rodentia. In total, 242 sequences (31 species, 11 genera) from Murinae and 130 sequences (23 species, 6 genera) from Arvicolinae were investigated, of which 90 individuals were novel. Genetic distance, threshold method, tree‐based method, online BLAST and BLOG were employed to analyse the data sets. There was no obvious barcode gap. The average K2P distance within species and genera was 2.10% and 12.61% in Murinae, and 2.86% and 11.80% in Arvicolinae, respectively. The optimal threshold was 5.62% for Murinae and 3.34% for Arvicolinae. All phylogenetic trees exhibited similar topology and could distinguish 90.32% of surveyed species in Murinae and 82.60% in Arvicolinae with high support values. BLAST analyses yielded similar results with identification success rates of 92.15% and 93.85% for Murinae and Arvicolinae, respectively. BLOG successfully authenticated 100% of detected species except Leopoldamys edwardsi based on the latest taxonomic revision. Our results support the species status of recently recognized Micromys erythrotis, Eothenomys tarquinius and E. hintoni and confirm the important roles of comprehensive taxonomy and accurate morphological identification in DNA barcoding studies. We believe that, when proper analytic methods are applied or combined, DNA barcoding could serve as an accurate and effective species identification approach for Murinae and Arvicolinae based on a proper taxonomic framework.  相似文献   

7.
Morphological variability within the species Microtus (Terricola) grafi is investigated in relation to the parameters of time and climate. Microtus (Terricola) grafi has been described from the Upper Pleistocene cave of Bacho Kiro (Bulgaria), which has yielded numerous teeth from several levels reflecting climatic fluctuations. The first lower molars are analyzed by 23 biometric variables so as to quantify tooth shape and its variation with time and climate. This morphological analysis reveals a number of shape indexes reflecting whether an individual lived in warm or cold conditions. The most significant result is that individuals living in warm conditions exhibit the more primitive feature of having a less tilted pitymyan rhombus.  相似文献   

8.
9.
Phylogenetic relationships, taxonomy and nomenclature issues within East Asian voles Alexandromys were addressed using comprehensive species samples, including all 12 valid species of the genus, and multilocus analysis. We examined the mitochondrial cytochrome b (cytb) gene and three nuclear genes in 36 specimens. Additionally, we examined a data set of 106 specimens using only the cytb gene. Our results did not confirm the aggregation of A. kikuchii, A. montebelli and A. oeconomus into a separate clade, namely the subgenus Pallasiinus. Analysis of incomplete lineage sorting using JML software highlighted both the cases of mitochondrial introgression and incomplete lineage sorting within the genus. Thus, the sister position of A. sachalinensis and A. maximowiczii in mitochondrial trees could be explained by mitochondrial introgression, while the sister position of A. limnophilus and A. fortis in mitochondrial trees could be successfully explained by incomplete lineage sorting. Very short genetic distances, together with an absence of monophyly, of the three species, A. evoronensis, A. mujanensis and A. maximowiczii, is supported by multiple morphological data, which indicates that these three taxa should be one species—A. maximowiczii. Analysis of genetic distances and tree topology revealed that three species of short‐tailed voles—A. middendorffii, A. mongolicus and A. gromovi—are more closely related to each other than to other established species of Alexandromys. The lacustrine vole, A. limnophilus, is closely related to the group of short‐tailed voles. Analysis of the type specimens of limnophilus and flaviventris confirmed that these taxa form one species together with A. l. malygini. Our results suggest that the mountains of western Mongolia are inhabited by a new taxon of short‐tailed voles of the same rank as middendorffii, mongolicus and gromoviA. malpinus ssp. n.  相似文献   

10.
The water vole (Arvicola amphibius) is Britain’s most endangered mammal, having gained protection under Schedule 5 of the Wildlife and Countryside Act in 2008. We present an overview of a range of naturally occurring pathogens and parasites in this rare species, which might negatively impact population persistence for small or declining populations. Wild water voles were live-captured in 2004 and 2006 from sites throughout the UK and were screened for a range of pathogens. These included: Puumala virus, Campylobacter spp., Escherichia coli, Salmonella enterica, Leptospira spp., Bartonella spp., Toxoplasma gondii, Giardia spp., Cryptosporidium spp., Babesia microti and Trypanosoma spp. E. coli was the most prevalent with 46/74 (62.2%; 95% CI, 51–73) individuals infected. One vole was co-infected with seven different pathogens whilst 20% of individuals were pathogen-free.  相似文献   

11.
In a sample of 108 underground voles from 23 Greek localities, the species Microtus felteni, M. guentheri, M. rossiaemeridionalis and M. subterraneus were identified, based on external body morphology and karyotype. Moreover, the implemented C-banding staining technique revealed the heterochromatin distribution in the chromosomes of the above species. All M. guentheri (2n=54, FN=54) and M. rossiaemeridionalis (2n=54, FN=56) specimens displayed the typical karyotypes of these species, respectively. The M. subterraneus specimens belonged to the chromosomal race with 2n=52, FN=60 of this species, apart from a single individual that demonstrated a medium-sized, subtelocentric autosome in heterozygous condition (2n=52, FN=61). Furthermore, M. felteni individuals, trapped again after many years, were karyologically studied (2n=54, FN=56) and the C-banding pattern for this species is hereby presented for the first time. Finally, the study of meiotic preparations in M. guentheri and M. rossiaemeridionalis males verified the asynaptic behaviour of their sex chromosomes. The karyotype of the four studied Microtus species does not seem to have diversified much from the putative ancestral arvicoline karyotype (2n=56, FN=56). On the other hand, the heterochromatin accumulation in the sex chromosomes, particularly prominent in M. felteni and M. rossiaemeridionalis, represents this common tendency in several Microtus species.  相似文献   

12.
A method was developed for determining the age and sex of the water vole (Arvicola amphibius L.) based on the measurements of the pelvic limb bones. The material was obtained from captive-bred animals of a known age. By using discriminant analysis, classification functions were found for dividing the animals of the sample analyzed (n = 56) by sex and age with an accuracy equal to one year. Testing the control group (n = 34) showed that the age of 90.0% of males and of 92.9% of females was determined correctly. The correctness of the classification by sex is 100%.  相似文献   

13.
The underground vole Microtus thomasi , a Balkan endemic, displays remarkable variability in sex chromosome size and morphology. In the present study, we demonstrate this variability in two of its chromosomal races with 2 n  = 44 (i.e. 'thomasi' and 'atticus') with the use of C-banding on a sample of 189 individuals from 50 localities of Greece. In 'thomasi', five different, acrocentric X chromosome variants (X0–X4) are described, which differ significantly in size, due to heterochromatin addition. Also, three Y chromosome variants are described (Y0–Y2), ranging in size from very small (Y0) to large (Y2). The 'atticus' race displays three subtelocentric variants of the X chromosome (Xst0–Xst2), which differ in arm length ratio and heterochromatin content. In Peloponnesus, males of this race exhibit Y0 and Y1, whereas, in Attiki (south-east Sterea Ellada), males carry the small metacentric, Ym. Overall, there is a trend towards sex chromosome size increase in a south to north direction. We propose that the last glaciation must have restricted M. thomasi to a refugium in southern Peloponnesus. During post-glacial colonization, limited northward expansion of its distribution area must have been accompanied by consecutive heterochromatin addition, which is proven today by comparatively larger sex chromosomes in the northern populations of 'thomasi' and 'atticus' in Greece than in their southern populations.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 685–695.  相似文献   

14.
In Craseomys rufocanus and Craseomys rex, the age-related and species differences in thickness and microstructure of the first lower molars (ml) have been identified and studied. The results suggest that the enamel dimensional and microstructural features may serve as additional indicators of the vole tooth evolutionary stage within a single phyletic lineage.  相似文献   

15.
Markova  E. A.  Bobretsov  A. V.  Starikov  V. P.  Cheprakov  M. I.  Borodin  A. V. 《Biology Bulletin》2018,45(9):1083-1095
Biology Bulletin - This paper summarizes the data on morphotype dental patterns in recent lemmings (Lemmini) and their earliest presumed ancestors based on analysis of both the existing literature...  相似文献   

16.
Water voles from the genus Arvicola display an amazing ecological versatility, with aquatic and fossorial populations. The Southern water vole (Arvicola sapidus) is largely accepted as a valid species, as well as the newly described Arvicola persicus. In contrast, the taxonomic status and evolutionary relationships within Arvicola amphibiussensu lato had caused a long-standing debate. The phylogenetic relationships among Arvicola were reconstructed using the mitochondrial cytochrome b gene. Four lineages within A. amphibiuss.l. were identified with good support: Western European, Eurasiatic, Italian, and Turkish lineages. Fossorial and aquatic forms were found together in all well-sampled lineages, evidencing that ecotypes do not correspond to distinct species. However, the Western European lineage mostly includes fossorial forms whereas the Eurasiatic lineage tends to include mostly aquatic forms. A morphometric analysis of skull shape evidenced a convergence of aquatic forms of the Eurasiatic lineage toward the typically aquatic shape of A. sapidus. The fossorial form of the Western European lineage, in contrast, displayed morphological adaptation to tooth-digging behavior, with expanded zygomatic arches and proodont incisors. Fossorial Eurasiatic forms displayed intermediate morphologies. This suggests a plastic component of skull shape variation, combined with a genetic component selected by the dominant ecology in each lineage. Integrating genetic distances and other biological data suggest that the Italian lineage may correspond to an incipient species (Arvicola italicus). The three other lineages most probably correspond to phylogeographic variations of a single species (A. amphibius), encompassing the former A. amphibius, Arvicola terrestris, Arvicola scherman, and Arvicola monticola.  相似文献   

17.
Jiang X  Gao J  Ni L  Hu J  Li K  Sun F  Xie J  Bo X  Gao C  Xiao J  Zhou Y 《Gene》2012,498(2):288-295
Microtus fortis is a special resource of rodent in China. It is a promising experimental animal model for the study on the mechanism of Schistosome japonicum resistance. The first complete mitochondrial genome sequence for Microtus fortis calamorum, a subspecies of M. fortis (Arvicolinae, Rodentia), was reported in this study. The mitochondrial genome sequence of M. f. calamorum (Genbank: JF261175) showed a typical vertebrate pattern with 13 protein coding genes, 2 ribosomal RNAs, 22 transfer RNAs and one major noncoding region (CR region).The extended termination associated sequences (ETAS-1 and ETAS-2) and conserved sequence block 1 (CSB-1) were found in the CR region. The putative origin of replication for the light strand (O(L)) of M. f. calamorum was 35bp long and showed high conservation in stem and adjacent sequences, but the difference existed in the loop region among three species of genus Microtus. In order to investigate the phylogenetic position of M. f. calamorum, the phylogenetic trees (Maximum likelihood and Bayesian methods) were constructed based on 12 protein-coding genes (except for ND6 gene) on H strand from 16 rodent species. M. f. calamorum was classified into genus Microtus, Arvcicolinae for the highly phylogenetic relationship with Microtus kikuchii (Taiwan vole). Further phylogenetic analysis results based on the cytochrome b gene ranged from M. f. calamorum to one of the subspecies of M. fortis, which formed a sister group of Microtus middendorfii in the genus Microtus.  相似文献   

18.
19.
To investigate the phylogenetic and phylogeographical relationships of arvicolines, we use several Western European ground voles. More particularly, our study is focused on Microtus ( Terricola ) savii and M. ( T. ) pyrenaicus . These two allopatric species are usually considered as having originated from the same ancestor, possibly M . ( T. ) mariaclaudiae . We propose molecular and morphological approaches: nucleotidic data from the mitochondrial cytochrome b and 12S rRNA genes and global morphological analyses from the first lower molar. Four other Terricola species ( multiplex , lusitanicus , duodecimcostatus , subterraneus ) were added to the data set for both analyses, and two other vole species ( Clethrionomys glareolus and Chionomys nivalis ) as outgroup to the molecular analysis, and five fossil populations to the morphological one. Palaeontological data are also widely taken into account. Both molecular and morphological analyses indicate that intra- Terricola relationships reflect the present-day geographical distribution of our data set species. Our results show that M. ( T. ) savii and M. ( T. ) pyrenaicus are from separate speciation events leading to two different biogeographical groups, respectively the Alpine–Italian group and the French–Iberian group, the latter being much more homogeneous. These speciation events could be related to Quaternary climatic changes, which induced southward migration, leading first to M. ( T. ) savii and second to M. ( T. ) pyrenaicus . The classical hypothesis of a geographical speciation for these two taxa from M. ( T. ) mariaclaudiae is invalid. However, the morphological data suggest a potential phylogenetic relationship between M. ( T. ) mariaclaudiae (ancestor) and M. ( T. ) pyrenaicus (descendant).  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 309–323.  相似文献   

20.
Liu S  Liu Y  Guo P  Sun Z  Murphy RW  Fan Z  Fu J  Zhang Y 《Zoological science》2012,29(9):610-622
The systematics of Oriental voles remains controversial despite numerous previous studies. In this study, we explore the systematics of all species of Oriental voles, except Eothenomys wardi, using a combination of DNA sequences and morphological data. Our molecular phylogeny, based on two mitochondrial genes (COI and cyt b), resolves the Oriental voles as a monophyletic group with strong support. Four distinct lineages are resolved: Eothenomys, Anteliomys, Caryomys, and the new subgenus Ermites. Based on morphology, we consider Caryomys and Eothenomys to be valid genera. Eothenomys, Anteliomys, and Ermites are subgenera of Eothenomys. The molecular phylogeny resolves subgenera Anteliomys and Ermites as sister taxa. Subgenus Eothenomys is sister to the clade Anteliomys + Ermites. Caryomys is the sister group to genus Eothenomys. Further, the subspecies E. custos hintoni and E. chinensis tarquinius do not cluster with E. custos custos and E. chinensis chinensis, respectively, and the former two taxa are elevated to species level and assigned to the new subgenus Ermites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号