首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
室内研究了光谱、光强度对棕榈蓟马雌成虫的趋、避光行为的影响。结果显示:在340—605 nm波谱内棕榈蓟马雌成虫对14个单色光刺激的趋光行为反应为多峰型。其中蓝光483 nm处峰最高,趋光反应率达34.96%,其次为绿光498—524 nm、562—582 nm、紫外光340 nm处;其避光行为反应共有3个峰,其中紫外光380 nm处最高,避光率18.08%,另外2个峰分别在橙光605 nm、紫光420 nm处。在趋光率较高的单色光(340、483、524、582 nm)和避光率较高的单色光(380、605 nm)以及白光刺激下,棕榈蓟马雌成虫的趋光率随光强增强的增强而提高,而避光率则随着光强的增强而降低;光强最弱时仍均有一定趋光率,最强时均未出现高端平台。因此:棕榈蓟马雌成虫对不同单色光具有明显的选择性,光谱和光强度对其趋光行为和避光行为有较大影响,光强度的影响作用与波长因素有关。  相似文献   

2.
Summary Cultures of unicellular algal flagellateEuglena gracilis grown in different conditions were subjected to action spectroscopy for step-down and step-up photophobic responses, respectively. The spectral region was extended into the UV-B/C as well as in the UV-A and visible regions with the Okazaki Large Spectrograph as the monochromatic light source. The photophobic responses of the cells were measured with an individual-cell assay method with the aid of a computerized video motion analyzer. In the UV-A and visible regions, the shapes of the action spectra were the so-called UV-A/blue type. In the newly studied UV-B/C region, new action peaks were found at 270 nm for the step-down response and at 280 nm for the step-up one. The absorption spectrum of flavin adenine dinucleotide (FAD) appeared to fit the action spectrum for the step-up response, whereas the shape of the step-down action spectrum, which has a UV-A peak (at 370 nm) higher than the blue peak (at 450 nm), appeared to be mimicked by the absorption spectrum of a mixed solution of 6-biopterin and FAD. These observations might also account for the fact that the UV-B/C peak wavelength at 270 nm of the action spectrum for the step-down response is shorter by 10 nm than the action spectrum for the step-up response at 280 nm.Abbreviations FAD flavin adenine dinucleotide - FWHM spectral full width at half maximum - NIBB National Institute for Basic Biology - OLS Okazaki Large Spectrograph - PFB paraflagellar body - UV-A ultraviolet light of spectral region between 320 and 400 nm - UV-B/C ultraviolet light of spectral region between 190 and 320 nm  相似文献   

3.
The unicellular ciliary protozoan, Stentor coeruleus, exhibits photophobic and phototactic responses to visible light stimuli. The pigment granule contains the photoreceptor chromoproteins (stentorins). Stentorin localized in the pigment granules of the cell serves as the primary photoreceptor for the photophobic and phototactic responses in this organism. An initial characterization of the pigment granules has been described in terms of size, absorbance spectra and ATPase activity. Two forms of the stentorin pigments have been isolated from the pigment granules. Stentorin I has an apparent molecular weight of 68,600 and 52,000 by SDS-PAGE (at 10 and 13% gel, respectively) or 102,000 by steric exclusion HPLC, whereas stentorin II is a larger molecular assembly probably composed of several proteins (mol. wt. greater than 500,000). Stentorin I is composed of at least two heterologous subunits corresponding to apparent mol. wts. of 46,000 (fluorescent, Coomassie blue negative) and 52,000 (fluorescent, Coomassie blue positive) on SDS-PAGE (13% gel). However, these values were found to be strongly dependent on the degree of crosslinking in the acrylamide gel. Stentorin II appears to be the primary photoreceptor whose absorption and fluorescence properties are consistent with the action spectra for the photoresponses of the ciliate to visible light.  相似文献   

4.
Negative phototactic orientation, step-up photophobic responses and light-induced action potentials have been studied in the ciliate Stentor coeruleus. A resolved action spectrum, based on fluence rate-response curves, is consistent with stentorin as the photoreceptor. Calcium flux blockers prolong the response time for ciliary stop and reversal and inhibit step-up photophobic responses. Drugs believed to affect the membrane-bound calcium pump likewise inhibit phobic responses. On the other hand, α-phosphatidic acid promotes Ca2+-influx and enhances the photophobic sensitivity of the organism, thus providing an unambiguous evidence for the role of Ca2+ influx. A change in the response time decreases the degree of phototactic orientation, indicating that negative phototaxis in this organism is brought about by subsequent phobic responses of individual rows of cilia as the associated photoreceptor granules experience an increase in light intensity when the organism rotates during forward locomotion in lateral light.  相似文献   

5.
Spectral sensitivity functions were measured between 334 nm and 683 nm in Salamandra salamandra by utilizing two behavioral reactions: the negative phototactic response, and the prey catching behavior elicited by a moving worm dummy. The action spectrum of the negative phototactic response revealed 3 pronounced maxima: at 360–400 nm, at 520–540 nm, and at 600–640 nm. In the range around 450 nm, there was a reaction gap where sensitivity could not be measured. The action spectrum of the prey catching behavior was entirely different: maximal sensitivity was found at 500 nm and at 570 nm. Between 500 nm and 334 nm sensitivity decreased continuously for about 1 log unit (Fig. 6).Experiments under chromatic adaptation using the prey catching behavior indicate that the relatively high sensitivity in the ultraviolet range is not due to a separate ultraviolet photoreceptor, but is based on the responses of a photoreceptor maximally sensitive at about 500 nm.Color discrimination was tested by moving a colored worm dummy within a differently colored surround of equal subjective brightness. The salamanders were able to discriminate blue from green, and green from red (Fig. 10). The results can be explained by assuming a trichromatic color vision based on 3 photoreceptor types maximally sensitive around 450 nm, 500 nm and 570 nm (Fig. 12).  相似文献   

6.
Photomovement has been studied in the symbiontic association of the colorless flagellate, Cyanophora paradoxa Korschikoff with the cyanelles, Cyanocyta korschikoffiana. There is no phototactic orientation in this organism, but a photokinetic effect. In addition, the cells show a pronounced step-up photophobic response (however no or only a weak step-down response). The phobic response is mediated by a subset of the photosynthetic pigments located in the symbiontic cyanelles. It is linked to the noncyclic photosynthetic electron transport chain but it is independent of the photosynthetic generation of a proton gradient and the ATP synthesis linked to it.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropylbenzo quinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

7.
Photophobic reactions of the red alga Porphyridium cruentum have been studied by single cell observations and by population experiments with the light trap method. In white light traps photoaccumulation is saturated at about 6000 lx. Experiments with monochromatic light demonstrate the necessity of carefully separating the three basic light reactions, viz. phototaxis, photokinesis and photophobic response by an appropriate experimental set-up: In single-beam experiments trap wavelengths >695 nm cause photodispersal which is not due to photophobic entrance reactions, but is exclusively due to the positive photokinetic effect of the trap light. This photodispersal can be cancelled by a photokinetically active background light. In the short wavelength range not only photokinesis, but also phototaxis interferes with photophobic reactions thus affecting the density of photoaccumulations in the light trap. Phototactic and photokinetic interference can be avoided by a blue background light. The action spectrum measured this way indicates activity of photosystem I and photosystem II pigments in the perception of the step-down photophobic stimulus. Varying the wavelength of the background light at constant trap light absorbed mainly by photosystem I or photosystem II respectively, efficient spill-over of light energy from photosystem II to the light reaction of photosystem I could be demonstrated. From the results it is concluded that phobic reactions are induced by a decrease of the electron flow rate in the linear electron transport chain.  相似文献   

8.
In Halobacterium halobium, nicotine is known to block the synthesis of retinal. Cells grown in the presence of nicotine do not show any photophobic response. Addition of retinal1 or retinal2 restored the photophobic responses to light-increase in the UV and to light-decrease in the green-yellow part of the spectrum. The action spectra of the two retinal2-photosystems were red-shifted by 15–20 nm, compared with the corresponding retinal1 systems. We conclude that each of the two photosystems, PS 370 and PS 565, has its own photosensory pigment with retinal as the chromophoric group.  相似文献   

9.
The photophobic responses in the Cyanobacterium Anabaena variabilis which belongs to the Nostocaceae have been studied with aid of a population method as well as by single trichome observations. In white light experiments both step-up and step-down photophobic responses were observed. The wavelength dependence was examined at a constant fluence rate. The photophobically active light is absorbed by the photosynthetic pigments, mainly by the phycobiliproteins and chlorohyll a. Above 690 nm only negative reactions were observed, i.e. the trichomes left the light trap. In white light experiments DCMU strongly inhibited the photophobic responses, whereas photokinesis was not affected to the same extent indicating that the reaction is coupled with the non cyclic photosynthetic electron transport. DBMIB impaired the photophobic behaviour only slightly. It seems that the photophobic responses of A. variabilis are controlled by a similar mechanism as in Phormidium uncinatum (Oscillatoriaceae) although the two families and, hence, the two species differ in their movement mechanism as well as in their photoactic behaviour.  相似文献   

10.
Günter Ruyters 《Planta》1988,174(3):422-425
Starch breakdown and respiratory O2 uptake in the green algaDunaliella tertiolecta (Butcher) are stimulated not only by blue, but also by red light. In the present study, attempts are described to identify the photoreceptor(s) involved. Fluence rate-response curves with different slopes in the ultraviolet (UV)/blue and in the red spectral region as well as differences in the kinetics and in the unfluence of dark pre-incubation on the stimulation of respiratory O2 uptake by blue and red light strongly indicate the action of two photoreceptors. Since the effect of red light shows some far-red reversibility, and since simultaneous irradiation with red and far-red light decreases the effectiveness of red light, the involvement of phytochrome — in addition to the UV/blue photoreceptor(s) — is suggested in the light-stimulated respiration inDunaliella.Abbreviation UV ultraviolet  相似文献   

11.
Effects of preillumination on photophobic response (light-adaptation) and recovery of the photophobic sensitivity in the dark (dark-adaptation) in Stentor coeruleus were examined. When the cells were preilluminated with white light of 7.80 W/m2 for 2 min, the fluence-rate response curve of photophobic response was shifted toward higher light intensities by half an order of magnitude compared to the one without preillumination. Preillumination with a higher light intensity resulted in a further shift of the fluencerate response curve. An action spectrum for light-adaptation showed a primary peak at 610 nm and secondary peaks at 540 and 480 nm which are almost identical to the peaks observed in the photophobic action spectrum.The light-adapted cells showed a recovery of their photophobic sensing ability following dark treatment. Dark-adaptation resulted in total recovery of photophobic sensing ability in 8 minutes for the most cases examined.  相似文献   

12.
1. The blue light-induced cell tumbling behavior (the step-down photophobic response) and the accumulation of cells into a blue light trap (photoaccumulation) were investigated in Euglena. Dose response plots for these phenomena which we collectively term 'photobehavior' show both threshold and saturation characteristics. 2. NaCl effects apparent elevation in the photosensitivity of the cell as evidenced by alteration of the dose response plot character and lowering of the light intensity saturation level. 3. NaCl and ouabain enhance the duration of the photophobic responses and the rate of photoaccumulation. KCl and NH4Cl have lesser or inhibitory effects. 4. Choline chloride reduces the duration of the photophobic responses and the rate of photoaccumulation. 5. KCl reduces the enhancement of photobehavior induced by NaCl and at constant chloride concentration, photobehavior is unaffected by the relative KCl and NaCl concentrations. 6. Antagonists of voltage-dependent, monovalent cation fluxes in membranes (tetrodotoxin, procaine, tetraethylammonium, 4-aminopyridine) do not alter photobehavior. 7. The results suggest a role for a photoreceptor membrane-located transport system for Na+/K+ as a key step in control of the intraflagellar free Ca/+ levels that determine the photobehavior mediated by flagellar reorientation.  相似文献   

13.
A three-dimensional model of the flagellateEuglena gracilis was developed to simulate phototaxis and movement in space. The simulation of the phototactic behavior was compared with thein vivo behavior in order to determine the mechanism of orientation with respect to light. Phototactic behavior with respect to one light source, can be explained by the shading hypothesis as well as by a dichroic orientation of the absorbing vectors of the photoreceptor pigments. In contrast, the behavior of the cells when exposed to two perpendicular light beams is not compatible with the shading hypothesis. Likewise, the phototactic orientation of stigmaless cells cannot be accounted for on the basis of the shading hypothesis. In contrast, simulations andin vivo observations of the behavior under polarized light strongly indicate the validity of the dichroic orientation of the photoreceptor pigments.  相似文献   

14.
Unicellular green algae of the genusDunaliella thrive in extreme environmental conditions such as high salinity, low pH, high irradiance and subzero temperatures. Species ofDunaliella are well known in the alga biotechnological industry and are employed widely for the production of valuable biochemicals, such as carotenoids. Some strains ofDunaliella are cultivated commercially in large outdoor ponds and are harvested to produce dry algal meals, such as polyunsaturated fatty acids and oils for the health food industry, and coloring agents for the food and cosmetic industries. During the past decade, the advances in molecular biology and biochemistry of microalgae, along with the advances in biotechnology of microalgal mass cultivation, enabled this microalga to become a staple of commercial exploitation. In particular, the advent of molecular biology and mutagenesis inDunaliella has permitted enhancements in the carotenoids content of this green alga, making it more attractive for biotechnological applications. Accordingly, the present review summarizes the recent developments and advances in biotechnology of carotenoid production inDunaliella.  相似文献   

15.
Chlamydomonas reinhardtii exhibits photophobic and positive and negative phototactic responses that can be defined for cell populations using computerized cell tracking and motion analysis. Mutants CC-2359 and FN68 are pigment deficient mutants that are blocked in carotenoid synthesis and lack these photo responses. In particular, neither mutant exhibits flash-induced photophobic responses to visible light stimuli to which wild-type gametic cells exhibit a strong response, with several behavioral stages. Upon addition of all-trans retinal to these mutants, the photophobic responses are restored with minor quantitative differences from wild-type populations. Using both light and electron microscopy, we have compared the ultrastructural characteristics of wild-type C. reinhardtii to those of both mutants. As previously described, wild-type cells contain an eyespot consisting of 2–4 layers of pigmented granules encased within thylakoid membranes, located between the distal extremities of the flagellar root. This structure is also visible as an orange-red spot in light microscopy. The photoreceptor is thought to be concentrated in the plasma membrane above the eyespot. The mutant, CC-2359, lacks this eyespot as seen by both light and electron microscopy, even when the photophobic response has been restored. FN68-like mutants studied earlier by Morel-Laurens and Feinlieb and others contain an eyespot which can be seen only by electron microscopy. In FN-68, the eyespot generally has the same dimensions as in wt cells, differing mainly in pigment granule appearance. Consistent with these findings, several laboratories have shown that the full range of phototactic responses can be reconstituted in FN68 and CC-2359, but that negative phototaxis requires a significantly stronger light stimulus in the latter strain. We confirm the suggestion that the eyespot is not necessary for the photophobic response, and is not critical for the appropriate assembly and function of the photophobic response receptor in the membrane. Furthermore, the locus of reconstitution of the functional receptor is not the eyespot. Because of the definitive demonstration of the absence of the eyespot in CC-2359, however, the eyespot may play a role in negative phototaxis.  相似文献   

16.
The fluence-rate and time dependence for photoaccumulation and photodispersal ofEuglena gracilis was measured for the wild-type strain and three white mutants. For wavelengths of 453 or 463 nm the threshold for photoaccumulation was close to 6×10−2Wm−2. Photoaccumulation increased steadily with time and reached a maximum after about 4 hr. Red light elicited substantial photoaccumulation in the wild type and photodispersal in the white, non-photosynthetic mutant 1224-5/9f. The chromophore mediating the red-light response needs to be a non-photosynthetic pigment which remains presently unidentified. A whiteEuglena mutant, FB, which had retained a reduced stigma and a paraflagellar body, showed weak photoaccumulation. Two white mutants, 1224-5/1f and 1224-5/9f, both of which lacked the stigma and positive phototaxis, displayed during the first 90 min of irradiation photodispersal; after longer irradiations they showed instead photoaccumulation. These results contradict a widely held belief that the presence of a stigma represents a stringent requirement for photoaccumulation. Our results imply that phototaxis is not a prerequisite for photoaccumulation. Exogenous flavins and 5,10-methenyl-tetrahydrofolate (MTHF) influenced in a wavelength-dependent manner photoaccumulation and photodispersal. In the wild type FAD and riboflavin (RB) caused at 453 nm an increase of the responsiveness for photoaccumulation. The photoaccumulation of the white mutant FB, was sensitized by FMN and FAD. In the white mutant 1224-5/9f exogenous flavins lowered the threshold for photodispersal. FMN, which absorbs only blue light, altered also the responsiveness to red light: in the wild type FMN reduced photoaccumulation and in the white mutant 1224-5/9f it reduced photodispersal.  相似文献   

17.
The light-growth response of Phycomyces blakesleeanus (Burgeff) is a transient change in elongation rate of the sporangiophore caused by a change in light intensity. Previous investigators have found that the light-growth response has many features in common with phototropism; the major difference is that only the light-growth response is adaptive. In order to better understand the light-growth response and its relationship to phototropism, we have developed a novel experimental protocol for determining light-growth-response action spectra and have examined the effect of the reference wavelength and intensity on the shape of the action spectrum. The null-point action spectrum obtained with broadband-blue reference light has a small peak near 400 nm, a flat region from 430 nm to 470 nm, and an approximately linear decline in the logarithm of relative effectiveness above 490 nm. The shape of the action spectrum is different when 450-nm reference light is used, as has been shown previously for the phototropic-balance action spectrum. However, the action spectrum of the light-growth response differs from that for phototropic balance, even when the same reference light (450 nm) is used. Moreover, for the light-growth response, the relative effectiveness of 383-nm light decreases as the intensity of the 450-nm reference light increases; this trend is the opposite of that previously found for phototropic balance. The dependence of the lightgrowth-response action spectrum on the reference wavelength, its difference from the phototropic-balance action spectrum, and the reference-intensity dependence of the relative effectiveness at 383 nm may be attributable to dichroic effects of the oriented photoreceptor(s), and to transduction processes that are unique to the light-growth response.I dedicated to Masaki Furuya on the occasion of his 65th birthdayThis work was supported by a grant from the National Institutes of Health (GM29707) to E.D. Lipson. Anuradha Palit, Promod Pratap, and Benjamin Horwitz participated in the early phases of this work. We thank Leonid Fukshansky and Benjamin Horwitz for helpful discussions, David Durant for computer programming, and Steven Block for providing us with a C-language program of Reinsch's procedure for cubic spline interpolation. One of us (R.S.) gratefully acknowledges a junior faculty fellowship leave from the Department of Physics at Yale University.  相似文献   

18.
A real-time automated method was developed for simultaneous measurements of phototactic orientation (phototaxis) and step-up photophobic response of flagellated microorganisms. Addition of all-trans retinal restored both photoresponses in a carotenoid-deficient mutant strain of Chlamydomonas reinhardtii in a dose-dependent manner. The phototactic orientation was biphasic with respect to both the light intensity and the concentration of retinal. All-trans retinal was more effective than 11-cis retinal to regenerate both photobehavioral responses. Analogs having locked 11-cis configurations and a phenyl ring in the side chain also induced photoresponses, although at concentrations more than two orders of magnitude higher than all-trans retinal. According to the present assay method, the responses were hardly detectable in cells incubated with retinal analogs in which the 13-ene was locked in either its trans or cis configuration. The results strongly suggest that the isomerization of the 13-14 double bond is important for photobehavioral signal transduction and that a single retinal-dependent photoreceptor controls both phototactic and photophobic responses.  相似文献   

19.
Stentor coeruleus exhibits negative phototaxis and step-up photophobic response (avoiding reaction) to visible light (maximum at 610-620 nm in both responses). In the presence of deuterium oxide (D2O) the step-up photophobic response was markedly enhanced, whereas the phototactic orientation response was inhibited. The induction time for the step-up photophobic response was longer in D2O than in H2O, and the duration of ciliary reversal for the response was also longer in D2O than in H2O, indicating that certain steps of the sensory transduction chain are subject to solvent deuterium isotope effects. The enhancement of the step-up photophobic response in D2O was canceled by LaCl3, while the inhibition of the phototactic orientation response in D2O was partially removed by LaCl3, even though LaCl3 did not affect the phototactic orientation response. These results suggest that the sensory transduction mechanisms for the two photoresponses are different, although the photoreceptors (stentorin) are the same.  相似文献   

20.
Secondary carotenoids are suspected to modulate photomovement in Haematococcus lacustris [Girod] Rostafinski (Volvocales). To investigate the influence of these extrachloroplastic ketocarotenoids on phototactic and photophobic responses in the flagellate stage of the green alga, flagellate suspensions differing in the content of secondary carotenoids were grown from green and red aplanospores. Photo-orientation of these flagellates induced by unilateral irradiation was investigated using a computer-aided system for microscopic image analysis. Results were hypothetically summarized as follows: (1) Diminution of precision of the positive phototaxis was found in red flagellates. This might be due to cellular shading of the blue-light-sensitive photoreceptor by secondary carotenoids. (2) Red flagellates exhibited an increase in the photophobic response. This finding is discussed in relation to an adaptive increase of the photoreceptor sensitivity, thought to be a result of the higher optical density of the corresponding cell suspension in the blue wavelength region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号