首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we show that intact Mycoplasma fermentans cells have a wealth of adhesive interactions with components of the extracellular matrix. Mycoplasma fermentans intensively bind plasminogen, and to a lesser extent, fibronectin, heparin, and laminin. The binding of collagen type III, IV, or V was low. The binding of plasminogen, collagen type III, or collagen type V markedly enhanced the adherence of M. fermentans to HeLa cells, whereas the binding of fibronectin, heparin, laminin, or collagen IV induced only a small effect on mycoplasma adherence. Utilizing plasminogen-treated M. fermentans preparations, we detected microorganisms within host HeLa cells by the gentamicin protection assay or by confocal laser scanning microscopy of immunofluorescent preparations. However, no intracellular M. fermentans was detected when M. fermentans preparations treated with fibronectin, heparin, laminin, or collagen type III, IV, or V were utilized.  相似文献   

2.
Cryptococcus neoformans is an opportunistic pathogen and the leading cause of fungal meningitis. To survive within the host, this organism must be able to protect itself from oxidative stress. Cytochrome c peroxidase (Ccp1) is a mitochondrial antioxidant that catalyzes the degradation of hydrogen peroxide. In the present study, we characterized the contribution of the C. neoformans Ccp1 to antioxidant defense and for virulence. Consistent with studies of Ccp1 function in Sacchromyces cerevisiae, we found that Ccp1 contributes to resistance against exogenous oxidative stress in vitro. However, the oxidative stress phenotype does not diminish the virulence of ccp1 mutant strains in a murine model of C. neoformans disease. These results suggest that Ccp1 is involved in a complex system of protection against exogenous oxidative stress and that the elimination of this component of the antioxidant defense system does not diminish the virulence of C. neoformans.  相似文献   

3.
4.
Membrane-associated hemolysin activities in mycoplasmas   总被引:4,自引:0,他引:4  
Abstract Mycoplasmas are cell wall-less organisms that require membrane precursors for growth. Activities involved in the acquisition of these materials have been hypothesized as mycoplasmal virulence factors because of the effects these activities might have on host cells. Twenty-nine species or strains of mycoplasmas were examined for membrane-associated hemolysis activity similar to that previously identified in Mycoplasma pulmonis . Membrane-associated hemolytic activity was found in most mycoplasma species, but the amount of activity varied between and within the species. All of the arginine-utilizing mycoplasmal species, one M. pulmonis strain, one Acholeplasma species, and the intracellular human pathogens M. penetrans and M. fermentans ssp. incognitus were devoid of activity. The wide distribution of the membrane-associated hemolysis activity suggests that it may be important to the survival of the organism.  相似文献   

5.
6.
Abstract In an in vitro direct assay with tissue-type plasminogen activator (tPA), plasminogen and the chromogenic substrate S-2251, the ability of Mycoplasma fermentans KL4 to stimulate tPA-mediated activation of plasminogen to plasmin was studied. Mycoplasma cells markedly enhanced the activation of plasminogen by tPA in a concentration-, temperature- and pH-dependent manner. Nonidet P-40 (0.01%), sonication, and freezing and thawing of the cells substantially increased the stimulatory effect of mycoplasma on tPA activity. In contrast, the activation of plasminogen by urokinase was refractory to mycoplasma cells. The mycoplasma-mediated stimulation of tPA activity was prevented by ϵ-aminocaproic acid (EACA), a lysine analogue known to block lysine-binding sites (LBS) in plasminogen and tPA. Among several Mycoplasma fermentans strains tested, incognitus strain demonstrated the highest stimulation activity. These results suggest that mycoplasma cells interact with LBS in tPA and plasminogen to enhance plasminogen activation.  相似文献   

7.
Rapidly proliferating epithelial crypt cells of the small intestine are susceptible to radiation-induced oxidative stress, yet there is a dearth of data linking this stress to expression of antioxidant enzymes and to alterations in intestinal nutrient absorption. We previously showed that 5-14 days after acute γ-irradiation, intestinal sugar absorption decreased without change in antioxidant enzyme expression. In the present study, we measured antioxidant mRNA and protein expression in mouse intestines taken at early times postirradiation. Observed changes in antioxidant expression are characterized by a rapid decrease within 1h postirradiation, followed by dramatic upregulation within 4h and then downregulation a few days later. The cell type and location expressing the greatest changes in levels of the oxidative stress marker 4HNE and of antioxidant enzymes are, respectively, epithelial cells responsible for nutrient absorption and the crypt region comprising mainly undifferentiated cells. Consumption of a cocktail of antioxidant vitamins A, C, and E, before irradiation, prevents reductions in transport of intestinal sugars, amino acids, bile acids, and peptides. Ingestion of antioxidants may blunt radiation-induced decreases in nutrient transport, perhaps by reducing acute oxidative stress in crypt cells, thereby allowing the small intestine to retain its absorptive function when those cells migrate to the villus days after the insult.  相似文献   

8.
Abstract Trypan blue exclusion was used to estimate the viability of human polymorphonuclear leukocytes (PMNL) in the presence of Mycoplasma felis and two strains of M. fermentans (PG18 and incognitus). The competence of PMNL to mount a respiratory burst when challenged with the mycoplasmas was also monitored by luminol-dependent chemiluminescence (CL). Both un-opsonised and non-immune human serum opsonised M. felis cells had little effect on PMNL viability. In contrast, PMNL viability was reduced markedly by un-opsonised cells of M. fermentans strain incognitus and, to a lesser extent, strain PG18, and opsonisation of these mycoplasmas further enhanced killing. Death of PMNL in the presence of M. fermentans was not associated with the autonomous production of active oxygen species during the respiratory burst as M. felis induced a high CL response from PMNL, whereas that induced by M. fermentans strain incognitus was significantly lower. M. fermentans may invade mammalian cells and it is suggested that the mechanism of PMNL death could be related to the ability of M. fermentans to penetrate host cell membranes.  相似文献   

9.
Oxidative stress has been implicated in the induction of programmed cell death in a wide variety of organisms. Acquiring antioxidant capacity is thought to enhance the viability of cells challenged by a subsequent oxidative stress. Counter-intuitively, we show that in two phytoplankton species, Chlamydomonas reinhardtii and Peridinium gatunense , representing the green and red plastid lineages, oxidative stress induced cell death in cultures that already possessed high antioxidant activity but not in cells that exhibited low activity. Cell death of low antioxidant possessing cultures was markedly enhanced by the addition of dehydroascorbate, a product of ascorbate peroxidase (APX), but not of ascorbate or reduced glutathione, and was preceded by increased metacaspase expression and activity. These data suggested that the level of APX and its products, strongly upregulated by oxidative stress, serves as a possible surveillance signal, reporting that the cells already experienced an earlier oxidative stress. Our data presents a novel role of APX in antioxidant activity and response to oxidative stress in photosynthetic microorganisms. Elimination of cysts production by phytoplankton cells that were already damaged by oxidative stress (indicated by the rise in oxidized proteins) as the inoculum for the following year's population may be the evolutionary trigger for this phenomenon.  相似文献   

10.
Mycoplasma have been shown to be involved in the alteration of several eukaryotic cell functions, such as cytokine production, gene expression and more. We have previously reported that infection of human myelomonocytic U937 cell line with live Mycoplasma fermentans (M. fermentans) inhibited tumour necrosis factor (TNF-alpha)-induced apoptosis. Mycoplasmal membrane lipoproteins are considered to be the most potent initiators of inflammatory reactions in mycoplasmal infections. The aim of this study was to clarify whether the inhibitory effect on TNFalpha-induced apoptosis is exerted by M. fermentans lipoproteins (LPMf). A significant reduction in TNFalpha-induced apoptosis was demonstrated by stimulation of U937 cells with M. fermentans total proteins, LPMf or MALP-2 (M. fermentans synthetic lipopeptide), but not with M. fermentans hydrophilic protein preparation (AqMf). To investigate the mechanism of M. fermentans antiapoptotic effect, the reduction of mitochondrial transmembrane potential (delta psi m) was measured. M. fermentans total proteins LPMf and MALP-2, but not AqMf, inhibited the reduction of delta psi m. In addition, M. fermentans total proteins LPMf and MALP-2, but not AqMf, downregulated the formation of active caspase-8. NF-kappaB was transactivated in cells treated with M. fermentans lipoproteins, and was essential for host cell survival, but not for the inhibition of TNFalpha-induced apoptosis by LPMf. Our results suggest that the inhibitory effect exerted by M. fermentans on TNFalpha-induced apoptosis in U937 cells is due to the membrane lipoproteins of these bacteria.  相似文献   

11.
12.
The osteoporosis that occurs with aging is associated with reduced number and activity of osteoblastic cells. Aging, menopause, and osteoporosis are correlated with increased oxidative stress and reduced antioxidant defense mechanisms. We previously demonstrated that oxidative stress induced by a variety of compounds such as xanthine/xanthine oxidase (XXO) and minimally oxidized LDL (MM-LDL) inhibit the osteogenic differentiation of osteoprogenitor cells. Oxysterols are a family of products derived from cholesterol oxidation that have important biological activities. Recently, we reported that a specific oxysterol combination consisting of 22(S)- or 22(R)-hydroxycholesterol and 20(S)-hydroxycholesterol has potent osteogenic properties in vitro when applied to osteoprogenitor cells including M2-10B4 (M2) marrow stromal cells. We now demonstrate that this osteogenic combination of oxysterols prevents the adverse effects of oxidative stress on differentiation of M2 cells into mature osteoblastic cells. XXO and MM-LDL inhibited the osteogenic differentiation of M2 cells, demonstrated by the inhibition of markers of osteogenic differentiation: alkaline phosphatase activity, osteocalcin expression and mineralization. Treatment of M2 cells with osteogenic oxysterol combination 22(S)- and 20(S)-hydroxycholesterol both blocked and reversed the inhibition of osteogenic differentiation produced by XXO and MM-LDL in these cells. The protective effect of the oxysterols against oxidative stress was dependent on cyclooxygenase 1 and was associated with the osteogenic property of the oxysterols. These findings further demonstrate the ability of the osteogenic oxysterols to positively regulate osteogenic differentiation of cells, and suggests that the use of these compounds may be a novel strategy to prevent the adverse effects of oxidative stress on osteogenesis.  相似文献   

13.
The overproduction of reactive oxygen species (ROS) induces oxidative stress, a well-known process associated with aging and several human pathologies, such as cancer and neurodegenerative diseases. A large number of synthetic compounds have been described as antioxidant enzyme mimics, capable of eliminating ROS and/or reducing oxidative damage. In this study, we investigated the antioxidant activity of a water-soluble 1,10-phenantroline-octanediaoate Mn2+-complex on cells under oxidative stress, and assessed its capacity to attenuate alpha-synuclein (aSyn) toxicity and aggregation, a process associated with increased oxidative stress. This Mn2+-complex exhibited a significant antioxidant potential, reducing intracelular oxidation and increasing oxidative stress resistance in S. cerevisiae cells and in vivo, in G. mellonella, increasing the activity of the intracellular antioxidant enzymes superoxide dismutase and catalase. Strikingly, the Mn2+-complex reduced both aSyn oligomerization and aggregation in human cell cultures and, using NMR and DFT/molecular docking we confirmed its interaction with the C-terminal region of aSyn. In conclusion, the Mn2+-complex appears as an excellent lead for the design of new phenanthroline derivatives as alternative compounds for preventing oxidative damages and oxidative stress - related diseases.  相似文献   

14.
With the recognition of the central role of mitochondria in apoptosis, there is a need to develop specific tools to manipulate mitochondrial function within cells. Here we report on the development of a novel antioxidant that selectively blocks mitochondrial oxidative damage, enabling the roles of mitochondrial oxidative stress in different types of cell death to be inferred. This antioxidant, named mitoQ, is a ubiquinone derivative targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation through an aliphatic carbon chain. Due to the large mitochondrial membrane potential, the cation was accumulated within mitochondria inside cells, where the ubiquinone moiety inserted into the lipid bilayer and was reduced by the respiratory chain. The ubiquinol derivative thus formed was an effective antioxidant that prevented lipid peroxidation and protected mitochondria from oxidative damage. After detoxifying a reactive oxygen species, the ubiquinol moiety was regenerated by the respiratory chain enabling its antioxidant activity to be recycled. In cell culture studies, the mitochondrially localized antioxidant protected mammalian cells from hydrogen peroxide-induced apoptosis but not from apoptosis induced by staurosporine or tumor necrosis factor-alpha. This was compared with untargeted ubiquinone analogs, which were ineffective in preventing apoptosis. These results suggest that mitochondrial oxidative stress may be a critical step in apoptosis induced by hydrogen peroxide but not for apoptosis induced by staurosporine or tumor necrosis factor-alpha. We have shown that selectively manipulating mitochondrial antioxidant status with targeted and recyclable antioxidants is a feasible approach to investigate the role of mitochondrial oxidative damage in apoptotic cell death. This approach will have further applications in investigating mitochondrial dysfunction in a range of experimental models.  相似文献   

15.
Mycoplasma fermentans (M. fermentans) was shown to be involved in the alteration of several eukaryotic cell functions (i.e. cytokine production, gene expression), and was suggested as a causative agent in arthritic diseases involving impaired apoptosis. We investigated whether M. fermentans has a pathogenic potential by affecting tumor necrosis factor (TNF)alpha-induced apoptosis in the human myelomonocytic U937 cell line. A significant reduction in the TNFalpha-induced apoptosis (approximately 60%) was demonstrated upon either infection with live M. fermentans or by stimulation with non-live M. fermentans. To investigate the mechanism of M. fermentans antiapoptotic effect, the reduction of mitochondrial transmembrane potential (DeltaPsim) and the protease activity of caspase-8 were measured. In the infected cells, the reduction of DeltaPsim was inhibited (approximately 75%), and an approximately 60% reduction of caspase-8 activity was measured. In conclusion, M. fermentans significantly inhibits TNFalpha-induced apoptosis in U937 cells, and its effect is upstream of the mitochondria and upstream of caspase-8.  相似文献   

16.
The genome of the cyanobacterium Anabaena PCC 7120 encodes seven polypeptides showing sequence similarities with peroxiredoxins (Prx-s). One of them, prxQ-A (alr2503), which encodes a Prx Q homologue, is located in the same gene cluster as pkn22, which encodes a Ser/Thr kinase. Here we report that the pkn22-knockout mutant (Mp22) is sensitive to oxidative stress because it fails to synthesize PrxQ-A; the expression of prxQ-A is significantly induced under oxidative stress conditions. The hypersensitivity of the Mp22 mutant to oxidative stress was restored by inducing the expression of the prxQ-A gene in trans. The recombinant PrxQ-A protein shows antioxidant activity protecting the DNA from being degraded by reactive oxygen species, catalyzes the reduction of H2O2 in the presence of DTT, and shows thioredoxin-dependent peroxidase activity in vitro. The conserved Cys47 residue is the peroxide oxidation site, since the replacement of Cys47 by a Ser residue completely abolished the peroxidase activity. All these data suggest that PrxQ-A may efficiently protect this organism from oxidative stress.  相似文献   

17.
Reactive oxygen species (ROS)-induced damage on host cells and molecules has been considered the most likely proximal mechanism responsible for the age-related decline in organismal performance. Organisms have two possible ways to reduce the negative effect of ROS: disposing of effective antioxidant defenses and minimizing ROS production. The unbalance between the amount of ROS produced and the availability of antioxidant defenses determines the intensity of so-called oxidative stress. Interestingly, most studies that deal with the effect of oxidative stress on organismal performance have focused on the antioxidant defense compartment and, surprisingly, have neglected the mechanisms that control ROS production within mitochondria. Uncoupling proteins (UCPs), mitochondrial transporters of the inner membrane, are involved in the control of redox state of cells and in the production of mitochondrial ROS. Given their function, UCPs might therefore represent a major mechanistic link between metabolic activity and fitness. We suggest that by exploring the role of expression and function of UCPs both in experimental as well as in comparative studies, evolutionary biologists may gain better insight into this link.  相似文献   

18.
《Autophagy》2013,9(2):284-285
  相似文献   

19.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号