首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
  1. Elevated levels of anthropogenic noise, especially those observed through boating activity, can negatively impact fish species, but it remains unclear which species are most affected and which behavioural metrics are best used in assessing fish responses to underwater noise. The effects of boat sounds on freshwater species are of particular interest because freshwater environments are less studied than the marine realm despite comparably high levels of biodiversity.
  2. In the current study, we examine the behavioural responses to boat noise in two freshwater species that differ in their hypothesised response to sound inputs: the spottail shiner (Notropis hudsonius), a species with known hearing specialisations, and the bluegill sunfish (Lepomis macrochirus), a species with more generalised hearing capabilities. Fish were presented with boat noise in a laboratory setting, and their swimming, escape and foraging behaviours were assessed to examine differential responses in relation to hypothesised hearing abilities.
  3. Both species showed a decrease in general swimming behaviours but an increase in erratic movements in response to boat noise, indicative of stress responses for both species. Despite the similarities in response based on swimming behaviours however, only spottail shiners exhibited true escape responses to the onset of the noise stimulus, suggesting a more extreme reaction in the species with a more refined hearing ability.
  4. Taken together, these results show that freshwater fish can respond to increased levels of anthropogenic noise, but that the severity of the response may differ based on auditory structures and therefore presumed hearing ability. The differences seen between behavioural metrics used (swimming vs. escape responses) also demonstrate how care must be taken in choosing a metric when developing exposure guidelines for underwater sound exposures, as different metrics could lead to differential impact assessments.
  相似文献   

2.
  1. Many aquatic ecosystems are experiencing multiple anthropogenic stressors that threaten their ability to support ecologically and economically important fish species. Two of the most ubiquitous stressors are climate change and non-point source nutrient pollution.
  2. Agricultural conservation practices (ACPs, i.e. farming practices that reduce runoff, prevent erosion, and curb excessive nutrient loading) offer a potential means to mitigate the negative effects of non-point source pollution on fish populations. However, our understanding of how ACP implementation amidst a changing climate will affect fish production in large ecosystems that receive substantial upstream sediment and nutrient inputs remains incomplete.
  3. Towards this end, we explored how anticipated climate change and the implementation of realistic ACPs might alter the recruitment dynamics of three fish populations (native walleye Sander vitreus and yellow perch Perca flavescens and invasive white perch Morone americana) in the highly productive, dynamic west basin of Lake Erie. We projected future (2020–2065) recruitment under different combinations of anticipated climate change (n = 2 levels) and ACP implementation (n = 4 levels) in the western Lake Erie catchment using predictive biological models driven by forecasted winter severity, spring warming rate, and Maumee River total phosphorus loads that were generated from linked climate, catchment-hydrology, and agricultural-practice-simulation models.
  4. In general, our models projected reduced walleye and yellow perch recruitment whereas invasive white perch recruitment was projected to remain stable or increase relative to the recent past. Our modelling also suggests the potential for trade-offs, as ACP implementation was projected to reduce yellow perch recruitment with anticipated climate change.
  5. Overall, our study presents a useful modelling framework to forecast fish recruitment in Lake Erie and elsewhere, as well as offering projections and new avenues of research that could help resource management agencies and policy-makers develop adaptive and resilient management strategies in the face of anticipated climate and land-management change.
  相似文献   

3.
  1. Anthropogenic noise can affect animals physically, physiologically, and behaviourally. Although individual responses to noise are well documented, the consequences in terms of community structure, species coexistence, and ecosystem functioning remain fairly unknown.
  2. The impact of noise on predation has received a growing interest and alterations in trophic links are observed when animals shift from foraging to stress-related behaviours, are distracted by noise, or because of acoustic masking. However, the experimental procedures classically used to quantify predation do not inform on the potential demographic impact on prey.
  3. We derived the relationship between resource use and availability (the functional response) for European minnows (Phoxinus phoxinus) feeding on dipteran larvae (Chaoborus sp.) under two noise conditions: ambient noise and ambient noise supplemented with motorboat noise. The shape and magnitude of the functional response are powerful indicators of population outcomes and predator–prey dynamics. We also recorded fish behaviour to explore some proximate determinants of altered predation.
  4. For both noise conditions, fish displayed a saturating (type II) functional response whose shape depends on two parameters: attack rate and handling time. Boat noise did not affect handling time but significantly reduced attack rate, resulting in a functional response curve of the same height but with a less steep initial slope. Fish exhibited a stress-related response to noise including increased swimming distance, more social interactions, and altered spatial distribution.
  5. Our study shows the usefulness of the functional response approach to study the ecological impacts of noise and illustrates how the behavioural responses of predators to noise can modify the demographic pressure on prey. It also suggests that prey availability might mediate the negative effect of noise on predation. Community outcomes are expected if the reduced consumption of the main food sources goes with the overconsumption of alternative food sources, changing the distribution pattern of interaction strengths. Predation release could also trigger a trophic cascade, propagating the effect of noise to lower trophic levels.
  相似文献   

4.
Noise pollution from anthropogenic sources is an increasingly problematic challenge faced by many taxa, including fishes. Recent studies demonstrate that road traffic noise propagates effectively from bridge crossings into surrounding freshwater ecosystems; yet, its effect on the stress response and auditory function of freshwater stream fishes is unexamined. The blacktail shiner (Cyprinella venusta) was used as a model to investigate the degree to which traffic noise impacts stress and hearing in exposed fishes. Fish were exposed to an underwater recording of traffic noise played at approximately 140 dB re 1 μPa. Waterborne cortisol samples were collected and quantified using enzyme immunoassay (EIA). Auditory thresholds were assessed in control and traffic exposed groups by measuring auditory evoked potentials (AEPs). After acute exposure to traffic noise, fish exhibited a significant elevation in cortisol levels. Individuals exposed to 2 hours of traffic noise playback had elevated hearing thresholds at 300 and 400 Hz, corresponding to the most sensitive bandwidth for this species.  相似文献   

5.
6.
7.
8.
  1. Browning of waters, coupled to climate change and land use changes, can strongly affect aquatic ecosystems. Browning-induced light limitation may have negative effects on aquatic consumers via shifts in resource composition and availability and by negatively affecting foraging of consumers relying on vision. However, the extent to which light limitation caused by browning affects fish via either of these two pathways is largely unknown.
  2. Here we specifically test if fish growth responses to browning in a pelagic food web are best explained by changes in resource availability and composition due to light limitation, or by reduced foraging rates due to decreased visual conditions.
  3. To address this question, we set up a mesocosm experiment to study growth responses of two different fish species to browning and conducted an aquaria experiment to study species-specific fish foraging responses to browning. Furthermore, we used a space-for-time approach to analyse fish body length-at-age across >40 lakes with a large gradient in lake water colour to validate experimental findings on species-specific fish growth responses.
  4. With browning, we found an increase in chlorophyll a concentrations, shifts in zooplankton community composition, and a decrease in perch (Perca fluviatilis) but not roach (Rutilus rutilus) body growth. We conclude that fish growth responses are most likely to be linked to the observed shift in prey (zooplankton) composition. In contrast, we found limited evidence for reduced perch, but not roach, foraging rates in response to browning. This suggests that light limitation led to lower body growth of perch in brown waters mainly through shifts in resource composition and availability, perhaps in combination with decreased visibility. Finally, with the lake study we confirmed that perch but not roach body growth and length-at-age are negatively affected by brown waters in the wild.
  5. In conclusion, using a combination of experimental and observational data, we show that browning of lakes is likely to (continue to) result in reductions in fish body growth of perch, but not roach, as a consequence of shifts in prey availability and composition, and perhaps reduced foraging.
  相似文献   

9.
The habitat ambient noise may exert an important selective pressure on frequencies used in acoustic communication by animals. A previous study demonstrated the presence of a match between the low-frequency quiet region of the stream ambient noise (termed ‘quiet window’) and the main frequencies used for sound production and hearing by two stream gobies (Padogobius bonelli, Gobius nigricans). The present study examines the spectral features of ambient noise in very shallow freshwater, brackish and marine habitats and correlates them to the range of dominant frequencies of sounds used by nine species of Mediterranean gobies reproducing in these environments. Ambient noise spectra of these habitats featured a low-frequency quiet window centered at 100 Hz (stream, sandy/rocky sea shore), or at 200 Hz (spring, brackish lagoon). The analysis of the ambient noise/sound spectrum relationships showed the sound frequencies matched the frequency band of the quiet window in the ambient noise typical of their own habitat. Analogous ambient noise/sound frequency relationships were observed in other shallow-water teleosts living in similar underwater environments. Conclusions may be relevant to the understanding of evolution of fish acoustic communication and hearing.  相似文献   

10.
11.
  1. Although the amino acid composition of fishes and some marine invertebrates varies among taxa and systems, similar information is lacking for freshwater invertebrates. The objectives were to characterise and compare the amino acid composition among different aquatic species, dietary habits, and environmental conditions.
  2. Benthic macroinvertebrates from different functional feeding groups (FFG), bulk zooplankton, biofilm, and fishes representing 12 families (21 genera or species) were collected from temperate lakes in eastern Canada during the summers of 2013 and 2014. Fifteen protein-bound amino acids, including thiols, were measured in whole invertebrates, biofilm, or fish muscle. We hypothesised that the amino acid composition will differ among species and systems.
  3. Multiple discriminant analyses revealed significant differences in the amino acid composition among species—based on varying percentages of cysteine (as cysteic acid) and histidine—and among FFG/trophic designations—based on histidine and lysine—where the primary consumers were more variable than the predators.
  4. Overall, the results suggest that patterns were based on phylogenetics, biological characteristics, and the FFG/trophic designations of biota.
  5. The within-taxon variability in composition was also related to differences among lakes. Characteristics of their environment, including lake pH and the food web structure (abundance and composition of taxa), probably influenced their dietary habits and amino acid composition of diet.
  6. These results expand the currently limited knowledge of the biochemical composition of freshwater biota and provide impetus for further studies on nutritional values in predator-prey relationships, trophic guilds, and the biomagnification of protein-bound contaminants through food webs.
  相似文献   

12.
  1. Fish carcass decomposition can generate fluxes of nutrients to the water column at levels comparable to other major nutrient sources. However, relatively little is known about the biological processes modulating fish decay or the rates at which carcass-bound nutrients are made available to the biota.
  2. This study focused on quantifying scavenger-mediated phosphorus (P) recycling, because the availability of this essential element can regulate the trophic state of aquatic ecosystems.
  3. To explore the role of some important macroscopic aquatic scavengers in P recycling, laboratory experiments were conducted where carcasses of two fish species (common bleak Alburnus alburnus; pumpkinseed Lepomis gibbosus) were offered to two size classes of black bullhead (Ameiurus melas) and two crustacean species (spiny-cheek crayfish Faxonius limosus; narrow-clawed crayfish Astacus leptodactylus).
  4. Our results show that the black bullhead and the two crayfish species are highly efficient macroscopic decomposers as the P contents of scavenged carcasses were reduced at significantly higher rates compared to those of microbially decomposed (control) carcasses.
  5. Pumpkinseed carcasses proved to be more resistant to rapid decomposition, as they typically lost lower proportions of their P content than bleak carcasses during the course of the experiments.
  6. Scavengers sequestered a relatively large fraction (up to 33% in black bullhead and 36% in crayfish) of total carcass P in their bodies. This suggests that the consumer species used in this study can transfer/return considerable quantities of carcass-derived nutrients directly to higher trophic levels incorporated into their own tissues, and may serve as an additional, short-term sink of these nutrients.
  相似文献   

13.
  1. Freshwater fishes are now facing unprecedented environmental changes across their northern ranges, especially due to rapid warming occurring at higher latitudes. However, empirical research that examines co-occurring environmental effects on northern fish communities remains limited.
  2. We used fish community data from 1587 Alaskan stream sites to examine the potential combined and interacting effects of climate change, current weather, habitat, land use, and fire on two community-level metrics (species richness, relative abundance), and on the distributions of three Alaskan fish species.
  3. Our models were 71–76% accurate in predicting the distribution of Alaskan stream fishes using a combination of climate and habitat variables. In contrast to other freshwater ecosystems that are most threatened by land use pressures, we did not detect any evidence for the potential stress of anthropogenic land use or fire on stream fishes.
  4. Warming temperatures increased overall community richness and abundance but produced differing responses at the species level. Juvenile salmon presence was positively associated with several climate variables including warmer spring and autumn temperatures and wetter summers. In comparison, warmer seasonal temperatures contributed to declines for northern-adapted species such as Arctic grayling and Dolly Varden.
  5. This study highlights the overarching role of current and changing climate in regulating northern stream fish biodiversity. Although many fish species may benefit from climate change across their northern ranges, localised declines are likely to occur and may prove detrimental for communities with limited fishing portfolios. Climate change adaptation and mitigation strategies customised for rapidly changing northern ecosystems will play an essential role in preserving ecologically unique northern species.
  相似文献   

14.
  1. Passive acoustic monitoring is gaining momentum as a viable alternative method to surveying freshwater ecosystems. As part of an emerging field, the spatio-temporal replication levels of these sampling methods need to be standardised. However, in shallow waters, acoustic spatio-temporal patchiness remains virtually unexplored.
  2. In this paper, we specifically investigate the spatial heterogeneity in underwater sounds observed within and between waterholes of an ephemeral river at different times of the day and how it could affect sampling in passive acoustic monitoring.
  3. We recorded in the Einasleigh River, Queensland in August 2016, using a linear transect of hydrophones mounted on frames. We recorded four times a day: at dawn, midday, dusk, and midnight. To measure different temporal and spectral attributes of the recorded sound, we investigated the mean frequency spectrum and computed acoustic indices.
  4. Both mean frequency spectrum and index analyses revealed that the site and diel activity patterns significantly influenced the sounds recorded, even for adjacent sites with similar characteristics along a single river. We found that most of the variation was due to temporal patterns, followed by between-site differences, while within-site differences had limited influence.
  5. This study demonstrates high spatio-temporal acoustic variability in freshwater environments, linked to different species or species groups. Decisions about sampling design are vital to obtain adequate representation. This study thus emphasises the need to tailor spatio-temporal settings of a sampling design to the aim of the study, the species and the habitat.
  相似文献   

15.
  1. Ecoacoustic methods are increasingly used to monitor the state of populations and ecosystems. In freshwater environments, they present the clear advantages of being non-invasive, reducing bias, and providing continuous observations instead of only limited sampling snapshots in time. However, similar to standard bioassessment methods, temporal variation and choice of indicators can greatly influence ecoacoustic assessments, highlighting the importance of sampling and analysis design.
  2. In this study, we quantified diurnal variation in underwater sound and its effect on sampling regimes for two waterholes in the Einasleigh River, Northern Australia. Recording continuously for 6 days, and subsampling 5 s every 10 min, we found 22 distinct sounds that were emitted by fish, Hemiptera and Coleoptera as well as another 22 of abiotic or unknown origin.
  3. Through rarefaction analyses, we found that subsampling the data to 60% of the recorded sound events resulted in capture of most of the 44 identified sound types. Temporal heterogeneity—patchy sound events through time—needs to be considered when maximising detected sound events. Reducing the sampling interval from every 10 min to half-hourly or hourly had a much greater effect on capturing all sound types compared to the number of days recorded or the length of the recording. Overall, only 10–20% of the sound events need to be annotated for most sound types to be described; for example, restricting analysis of the days recorded to only three and the recording interval to 0.5–1 s. Acoustic indices were dominated by three main event types—a diurnally flowing creek, a nocturnal chorus of Hemiptera, as well as a dawn chorus of terapontid fishes.
  4. We conclude with two key messages: First, a select group of informative signals can be monitored using very simple methods—namely, converting an audio stream into indices using freely available software. Second, however, to detect less acoustically dominant sound events, manual annotation or single call processing will still be needed. While these findings are encouraging, similar analysis will need to be conducted within other freshwater ecosystems before general conclusions about optimal sampling regimes can be drawn.
  相似文献   

16.
  1. It is often assumed that invertebrate consumers in small tropical streams are dependent on allochthonous sources, although recent studies indicate that algae can form the base of food webs in tropical streams. Fish in tropical streams can feed across several trophic levels and the origin and path of energy and nutrient flow is uncertain for many species.
  2. We collected fish, insects, periphyton, and leaf litter from 20 streams across four Atlantic Forest catchments. We analysed stomach contents of fish to define trophic guild and fish dietary trophic position. We also analysed stable isotopes of carbon and nitrogen of fish and their resources to identify the main basal resources of the food web and to estimate trophic positions and identify the path of energy flow.
  3. We found that autochthonous sources were the primary resource base for fish communities. Trophic positions estimated from diet and isotopes were similar and correlated for insectivore and algivore–insectivore fish, but not for algivore–detritivore or omnivore fish. Using path analysis, fish classified as algivore–detritivores appear to have derived their biomass through a diet of primary consumer insects and periphytic algae and thus, are more likely to play a trophic role as algivore–insectivores in these streams. However, omnivores probably derived much of their biomass from aquatic insects.
  4. Our findings support other studies of tropical systems in which the main basal resource is autochthonous, even in small streams. We also show that the assignment to a specific trophic guild for some fish species, based on gut contents, does not reflect what they assimilate into their bodies. In some species, food sources that are uncommon can make a disproportionately important contribution to their biomass.
  5. This study affirms the important role of inconspicuous algal resources in aquatic food webs, even in small forested streams, and demonstrates the effectiveness of taking a combined approach of diet analysis, isotopic tracing, and modelling to resolve food web pathways where the level of omnivory is high.
  相似文献   

17.
18.
  1. Invasive species are a key stressor in freshwater ecosystems. When these species are also ecosystem engineers, their impacts are exacerbated because they modulate resource availability for a wide range of other species. The aim of this review is to synthesise existing knowledge of the impacts of invasive ecosystem engineers in freshwaters and identify knowledge gaps requiring further research.
  2. The four questions explored in this review are: (1) What are the trends in research into invasive ecosystem engineers? (2) What are common negative effects of invasive ecosystem engineers in freshwater? (3) Do all impacts of invasive ecosystem engineers have negative consequences for biodiversity? (4) What happens when multiple ecosystem engineers interact? Four literature searches in Web of Science have been used to identify articles for the review and to estimate relative research effort between terrestrial, marine and freshwater ecosystems.
  3. The number of research articles focusing on ecosystem engineers across all ecosystem types is increasing. Despite well-known examples of ecosystem engineer species in freshwaters (e.g. beaver), more research has focussed on terrestrial environments and invasive species.
  4. The effects of invasive ecosystem engineers in freshwater systems are varied and often context dependent. Their effects on biodiversity or native ecosystem engineers are often shown to be negative; however, not all effects associated with these species are deleterious to native species. For instance, some invasive ecosystem engineers support native species through the provision of food or refuges.
  5. Although freshwater ecosystems are often influenced by multiple species of ecosystem engineers (including native, invasive or both), little is known about interactions between these species or the combined effects of multiple ecosystem engineers. More research is also needed that relates the results of laboratory experiments to the field and develops methods for measuring factors that govern the impact of engineers on ecosystems. Understanding the spatial variability of the impacts of invasive ecosystem engineers as well as their interaction with anthropogenic stressors (e.g. hydrologic modification) is also necessary.
  6. The lag in research surrounding invasive ecosystem engineers in freshwater compared to other biomes is concerning, as freshwater ecosystems support biodiversity disproportionate to the area they occupy. Creating predictive models of the impacts of freshwater ecosystem engineers would help anticipate the effects of invasive ecosystem engineers in freshwater and add to the broader understanding of their effects in other biomes.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号