首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Populations of the lizards Anolis carolinensis and A. sagrei were experimentally introduced onto small islands in the Bahamas. Less than 15 years after introduction, we investigated whether the populations had diverged and, if so, whether differentiation was related to island vegetational characteristics or propagule size. No effect of founding population size was evident, but differentiation of A. sagrei appears to have been adaptive, a direct relationship existed between how vegetationally different an experimental island was from the source island and how much the experimental population on that island had diverged morphologically. Populations of A. carolinensis had also diverged, but were too few for quantitative comparisons. A parallel exists between the divergence of experimental populations of A. sagrei and the adaptive radiation of Anolis lizards in the Greater Antilles; in both cases, relative hindlimb length and perch diameter are strongly correlated. This differentiation could have resulted from genetic change or environmentally-driven phenotypic plasticity. Laboratory studies on A. sagrei from a population in Florida indicate that hindlimb length exhibits adaptive phenotypic plasticity. Further studies are required to determine if the observed differences among the experimental populations are the result of such plasticity. Regardless of whether the differences result from plasticity, genetic change, or both, the observation that anole populations differentiate rapidly and adaptively when exposed to novel environmental conditions has important implications for understanding the adaptive radiation of Caribbean anoles.  相似文献   

2.
Since its introduction ten years ago, Anolis sagrei has spread over much of Grand Cayman and is now more common in some habitats than the native anole, A. conspersus. Interspecific differences in body size, perch height, and microclimatic preference may have facilitated the colonization. Nonetheless, competition may be occurring between the species; comparisons with studies of habitat use prior to the arrival of A. sagrei indicate that in open habitats, where A. sagrei is now abundant, A. conspersus perches higher, but in closed habitats, where A. sagrei is absent, no change in perch height is evident. Review of data concerning 23 Anolis introductions indicates that the presence or absence of an ecologically similar native species may be an important determinant of colonization success or failure.  相似文献   

3.
Introduced species can have a variety of effects on the behavior and ecology of native species. We compared display behavior and habitat use of introduced Anolis sagrei and native Anolis carolinensis lizards across three sites in Southern Louisiana. The chosen sites were similar in that they were all located in urban settings with clumped vegetation. The first site contained only A. sagrei, the second supported sympatric A. sagrei and A. carolinensis populations, and the third site harbored only A. carolinensis. We found that (1) A. carolinensis perched significantly higher when A. sagrei was present, consistent with previous studies, whereas perch height of A. sagrei was not altered by the presence of A. carolinensis; (2) A. carolinensis in single and mixed sites exhibited different proportions of display types, with individuals at the mixed Tulane site performing significantly more C displays than those at the single site; and (3) Anolis sagrei at the Tulane mixed site exhibited less push‐ups than those in the site with A. sagrei alone. These data suggest that the arrival of congeners can affect display behavior of anoles, although such effects are different for the natives and the invaders.  相似文献   

4.
This study provides a morphometric data set of body segments that are biomechanically relevant for locomotion in two ecomorphs of adult male anoles, namely, the trunk‐ground Anolis sagrei and the trunk‐crown Anolis carolinensis. For each species, 10 segments were characterized, and for each segment, length, mass, location of the center of mass, and radius of gyration were measured or calculated, respectively. The radii of gyration were computed from the moments of inertia by using the double swing pendulum method. The trunk‐ground A. sagrei has relatively longer and stockier hindlimbs and forelimbs with smaller body than A. carolinensis. These differences between the two ecomorphs demonstrated a clear relationship between morphology and performance, particularly in the context of predator avoidance behavior, such as running or jumping in A. sagrei and crypsis in A. carolinensis. Our results provide new perspectives on the mechanism of adaptive radiation as the limbs of the two species appear to scale via linear factors and, therefore, may also provide explanations for the mechanism of evolutionary changes of structures within an ecological context. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Mainland colonization by island lizards   总被引:4,自引:0,他引:4  
Aim We investigate biogeographic relationships within the lizard genus Anolis Daudin, 1802 to test the hypothesis that the mainland (Central and South American) Norops‐clade species descended from a West Indian Anolis ancestor. Previous hypotheses have suggested that close island relatives of mainland Norops species (the Cuban Anolis sagrei and Jamaican A. grahami series) represent over‐water dispersal from a mainland ancestor. These previous hypotheses predict that the A. sagrei and A. grahami series should be phylogenetically nested within a Norops clade whose ancestral geography traces to the mainland. If Norops is West Indian in origin, then West Indian species should span the deepest phylogenetic divergences within the Norops clade. Location Central and South America and West Indian islands. Methods The phylogenetic relationships of Anolis lizards are reconstructed from aligned DNA sequences using both parsimony and Bayesian approaches. Hypotheses are tested in two ways: (1) by reconstructing the ancestral geographic location for the Norops clade using Pagel & Lutzoni's (2002) Bayesian approach, and (2) by testing alternative topological arrangements via Wilcoxon Signed‐Ranks tests ( Templeton, 1983 ) and Shimodaira–Hasegawa tests ( Shimodaira & Hasegawa, 1999 ). Results Our evidence supports an origin of mainland Norops anoles from a West Indian ancestor. A West Indian ancestor to the Norops clade is statistically supported, and alternatives to the biogeographic pattern [Cuban (Jamaican, Mainland)] are statistically rejected by Shimodaira–Hasegawa tests, although not by Wilcoxon Signed‐Ranks tests. Main conclusions Our data support the hypothesis of a West Indian origin for mainland Norops. This result contradicts previous hypotheses and suggests that island forms may be an important source for mainland biodiversity.  相似文献   

6.
Thermal tolerances of organisms play a role in defining geographic ranges and occurrence of species. In Cuba, three sympatric species of Anolis lizards (Anolis allogus, Anolis homolechis and Anolis sagrei) inhabit different thermal microhabitats. A previous study found that these species showed distinct gene expression patterns in response to temperature stimuli, suggesting the genetically distinct thermal physiology among species. To investigate whether the Anolis species inhabiting locally distinct thermal habitats diverge their thermal tolerances, we first conducted behavioural experiments to analyse the temperatures at which the three Anolis species escape from heat source. Then, for each of the three species, we isolated cDNA encoding a putative molecular heat sensor, transient receptor potential ion channel ankyrin 1 (TRPA1), which has been suggested to play a role on eliciting behavioural responses to heat stimuli. We performed electrophysiological analysis to quantify activation temperature of Anolis TRPA1 to see whether the pattern of divergence in TRPA1 responses is congruent with that of divergence in behavioural responses. We found that temperatures triggering behavioural and TRPA1 responses were significantly lower for shade‐dwelling species (A. allogus) than for sun‐dwelling species (A. homolechis and A. sagrei). The ambient temperature of shade habitats where A. allogus occurs stays relatively cool compared to that of open habitats where A. homolechis and A. sagrei occur and bask. The high temperature thresholds of A. homolechis and A. sagrei may reflect their heat tolerances that would benefit these species to inhabit the open habitats.  相似文献   

7.
Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post‐colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor‐poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.  相似文献   

8.
An important goal in evolutionary ecology is to understand how and why coexisting closely related species partition habitat among themselves. Although studies of interspecific interactions typically focus on males, interactions between females may also play an important role in shaping habitat use within multi‐species communities. The green anole (Anolis carolinensis) exhibits a wide range of habitat use in south‐eastern Louisiana, but its observed habitat use is restricted and altered in areas where it occurs with the introduced Anolis sagrei. We staged interactions between these two species in the laboratory to test the hypothesis that A. sagrei dominate A. carolinensis in contests over shared habitat. We examined whether species identity, bite force, dewlap size, and body size affected the outcome of interspecific interactions between both males and females, and tested the prediction that bite force and size would be the most important determinants of interaction outcomes in both sexes. In male interspecific interactions, we found that individuals with relatively larger dewlaps tended to score higher on aggressive behaviours regardless of species identity, and that interactions consisted of signalling and rarely escalated to physical combat. However, we found that A. sagrei females achieved higher aggressive scores than A. carolinensis females in almost all cases, lending support to the notion that female interspecific behaviour is probably more important than male behaviour in driving changes in habitat use. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 843–851.  相似文献   

9.
Ecological specialization is common across all levels of biological organization, raising the question of whether the evolution of specialization at one scale in a taxon is linked to specialization at other scales. Anolis lizards have diversified repeatedly along axes of habitat use, but it remains unknown if this diversification into habitat use specialists is underlain by individual specialization. From repeated observations of individuals in a population of Anolis sagrei in Florida, we show that the extent of habitat use specialization among individuals is comparable to the extent of specialization in the same traits among ten sympatric Anolis habitat specialist species in Cuba. However, the adaptive correlations between habitat use and morphology commonly seen across species of Anolis were not observed across individuals in the sampled population. Our results therefore suggest that while patterns of ecological specialization can transcend scale, these parallels are the consequence of distinct ecological processes acting at microevolutionary and macroevolutionary scales.  相似文献   

10.
The evolution of body size in Anolis lizards of the Lesser Antilles Islands has been the subject of intensive, if divisive, study. Early research by Schoener revealed a regularity in the number of Anolis species that coexisted on islands and the difference in body size between coexisting congeners in the Northern Lesser Antilles. This consistent pattern of body size was suggested to be the result of competitive character displacement. Two recent studies critically evaluated this hypothesis by incorporating information about the phylogenetic relationships of insular Anolis. Roughgarden and Pacala suggested that the patterns of body-size differences in the Northern Lesser Antilles could be explained as a cyclical phenomenon that they labeled a taxon cycle. However, Losos supported the character-displacement hypothesis (“size adjustment”). The conflict between these two studies is important because both investigations were based on the same phylogenetic hypothesis. We investigated body-size evolution in Lesser Antilles Anolis to resolve the differences in the conclusions of these studies. Our new analysis supported the taxon-cycle hypothesis but nevertheless failed to reject the character-displacement hypothesis. We argue that this curious scenario is largely a function of the method by which phylogenetic information is incorporated in comparative analyses. Different comparative analyses may lead to dramatic differences in results and ambiguity in the conclusions to be drawn. We suggest that ecologists and evolutionary biologists specifically consider the underlying assumptions and models of character evolution inherent to each of the phylogenetically based analytical methods now available.  相似文献   

11.
Habitat choice often has strong effects on performance and fitness. For many animals, optimal habitats differ across age or size classes, and individuals shift habitat use through ontogeny. Although many studies document ontogenetic habitat shifts for various taxa, most are observational and do not identify the causal factor of size‐specific habitat variation. Field observations of the brown anole lizard (Anolis sagrei) show that juveniles perch on shorter and thinner vegetation than adults. We hypothesized that this variation is due to adult males forcing smaller juveniles to less preferred habitat. To test this assertion, we manipulated adult male densities in mesh enclosures with artificial trees to examine the response of juvenile microhabitat choice. We found that adult male density had strong effects on juvenile perch height, perch width, and substrate use, suggesting that age‐class competition contributes to the observed ontogenetic differences in habitat choice. We also found that time of day significantly affected juvenile perch height and substrate use. In many cases, our results suggest that juveniles distance themselves from adults using different microhabitats from those used in our control ‘no‐adult’ treatment. However, these findings were often body size dependent and varied depending upon time of day. This study highlights the complexity of juvenile perching behavior and demonstrates the role of intraspecific interactions in shaping habitat use by juvenile animals.  相似文献   

12.
Introduced species usually fail to establish, but when they succeed, may undergo character release and rapid evolutionary divergence in novel environments. We collected brown anoles (Anolis sagrei: Lacertilia: Iguanidae) from a single Florida population and released them onto two ecologically different dredge-spoil islands in central Florida (forested and non-forested) and measured differences in population growth, individual growth, body size, and condition over four years. The population on the non-forested island expanded twice as fast as the forested island population and reached a density of ca. 12,000 lizards ha–1 and a biomass of ca. 43.3 kg ha–1, among the largest values recorded for non-aggregated terrestrial vertebrates. First-year progeny grew larger than their surviving parents on both islands, indicating character release occurred in early stages of both invasions. However, in subsequent years, lizards became larger on the forested island, but smaller on the non-forested island. Body condition declined over time on both islands, but the effect was most dramatic on the non-forested island. Lizards on the forested island had the lowest survival rates and highest tail autotomy frequencies. These results were attributed to differences in abiotic and biotic conditions on the two islands. Brown anoles are generally larger on islands where they have been introduced than on their native Caribbean islands, and are much larger on mainlands than on islands, indicating character release occurred at larger geographic scales as well. Habitat influences the morphology of introduced species possessing the ability to rapidly adapt to local conditions, presenting invasive species managers with moving targets.  相似文献   

13.
Since its introduction, Anolis sagrei (Sauria: Polychrotidae) has been replacing native A. carolinensis in Florida and native A. conspersus in Grand Cayman Island as the common anole of urban environments and other open habitats. To assess the likelihood that predation of juvenile native anoles by A. sagrei adults is an important interaction in this process, the propensities for intraguild predation and cannibalism were assessed for A. sagrei and A. carolinensis in Florida and for A. sagrei and A. conspersus in Grand Cayman. Predation experiments were conducted in cages, using freshly captured lizards, in which adult males of each species were presented with conspecific and heterospecific juveniles. Adult A. sagrei were (1) significantly more likely to eat juveniles than were adult A. carolinensis or A. conspersus, and (2) significantly more likely to eat heterospecific than conspecific juveniles, whereas adult A. carolinensis and A. conspersus were not. Thus, the propensity for intraguild predation is asymmetrical in favor of introduced A. sagrei in Florida and Grand Cayman. Further study is needed, however, to determine the importance of intraguild predation under field conditions. Received: 14 July 1999 / Accepted: 6 March 2000  相似文献   

14.
Recent studies have demonstrated that changes in scale number are correlated with ecological variables such as precipitation, and this suggests that scale number may be under selection to maintain water balance in reptiles. Here, we present new evidence that variation in scale numbers within and among species of Anolis lizards is under ecologically based natural selection. We measured scalation of the brown anole, Anolis sagrei, in two habitat types on each of five islands in the Bahamas. We also measured scalation for 12 species of anole representing six different ecomorphs from the Greater Antilles. Within populations of A. sagrei, scale numbers increased with increasing precipitation and with decreasing temperature in open arid habitats. Variation measured among species of Anolis from the Greater Antilles showed similar patterns with temperature, precipitation, and elevation. Independent contrasts using scale count data indicated that variation in scale number was congruent within and between species, even after accounting for the influence of phylogeny. We measured natural selection (survival to maturity) on scale number in A. sagrei over two different habitat types in the Bahamas. Patterns of natural selection were congruent with the correlational results described. Finally, results from a breeding experiment in the laboratory provide preliminary evidence that variation in scale number is heritable, and suggests a mechanism for generating these correlations. Our results provide new evidence that the diversification of anoles has been shaped by natural selection and that ecologically based selection pressures help explain diversification at both the population and species levels. Co-ordinating editor: M. Klaassen  相似文献   

15.
A major barrier to evolutionary studies of sex determination and sex chromosomes has been a lack of information on the types of sex‐determining mechanisms that occur among different species. This is particularly problematic in groups where most species lack visually heteromorphic sex chromosomes, such as fish, amphibians and reptiles, because cytogenetic analyses will fail to identify the sex chromosomes in these species. We describe the use of restriction site‐associated DNA (RAD) sequencing, or RAD‐seq, to identify sex‐specific molecular markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the lizard Anolis carolinensis. We performed RAD‐seq on seven male and ten female A. carolinensis and found one male‐specific molecular marker. Anolis carolinensis has previously been shown to possess male heterogamety and the recently published A. carolinensis genome facilitated the characterization of the sex‐specific RAD‐seq marker. We validated the male specificity of the new marker using PCR on additional individuals and also found that it is conserved in some other Anolis species. We discuss the utility of using RAD‐seq to identify sex‐determining mechanisms in other species with cryptic or homomorphic sex chromosomes and the implications for the evolution of male heterogamety in Anolis.  相似文献   

16.
Animal signalling systems are extremely diverse as they are under different, often conflicting, selective pressures. A classic textbook example of a diverse signal is the anoline dewlap. Both at the inter‐ and intraspecific levels, dewlap size, colour, shape and pattern vary extensively. Here, we attempt to elucidate the various factors explaining the diversity in dewlap size and pattern among seven Anolis sagrei populations from different islands in the Bahamas. The seven islands differ in the surface area, number and kind of predators, sexual size dimorphism and Anolis species composition. In addition, we investigate whether selective pressures acting on dewlap design differ between males and females. Whereas dewlap pattern appears to serve a role in species recognition in both sexes, our data suggest that relative dewlap size is under natural and/or sexual selection. We find evidence for the role of the dewlap as a pursuit‐deterrence signal in both males and females as relative dewlap size is larger on islands where A. sagrei occurs sympatrically with predatory Leiocephalus lizards. Additionally, in males relatively large dewlaps seem to be selected for in a sexual context, whereas in females natural selection, for instance by other predators than Leiocephalus lizards, appears to constrain relative dewlap size.  相似文献   

17.
Lizards in the genus Anolis have experienced adaptive radiation in the Greater Antilles, producing a suite of species morphologically adapted to use different parts of the environment. In the Lesser Antilles, adaptive radiation has not occurred, but on some islands, interpopulational variation is high and represents adaptation to different habitats. We compared the extent of morphological differentiation among Greater Antillean habitat specialists with that exhibited among populations of two species, Anolis marmoratus and A. oculatus, from the Lesser Antillean islands of Guadeloupe and Dominica. Although extensive, intraspecific divergence in the Lesser Antilles is substantially less in magnitude than the differences among habitat specialists in the Greater Antilles. All populations of A. marmoratus are most similar to Greater Antillean trunk‐crown habitat specialists, but populations of A. oculatus differ in their affinities: some are similar to trunk‐crown anoles, but others are more similar to trunk‐ground habitat specialists.  相似文献   

18.
19.
Summary Photoperiod plays an important role in controlling the annual reproductive cycle of the male lizard Anolis carolinensis. The nature of photoperiodic time measurement in Anolis was investigated by exposing anoles to 3 different kinds of lighting paradigms (resonance, T cycles, and night breaks) to determine if photoperiodic time measurement involves the circadian system. Both the reproductive response and the patterns of entrainment of the activity rhythm were assessed. The results show that the circadian system is involved in photoperiodic time measurement in this species and that a discrete photoinducible phase resides in the latter half of the animals' subjective night. Significantly, the ability of the circadian system to execute photoperiodic time measurement is crucially dependent on the length of the photoperiod. Resonance, T cycle and night break cycles utilizing a photoperiod 10–11 h in duration reveal circadian involvement whereas these same cycles utilizing 6 or 8 h photoperiods do not.Abbreviation CRPP circadian rhythm of photoperiodic sensitivity  相似文献   

20.
Communities are thought to be assembled by two types of filters: by the environment relating to the fundamental niche and by biotic interactions relating to the realized niche. Both filters include parameters related to functional traits and their variation along environmental gradients. Here, we infer the general importance of environmental filtering of a functional trait determining local community assembly within insular adaptive radiations on the example of Caribbean Anolis lizards. We constructed maps for the probability of presence of Anolis ecomorphs (ecology‐morphology‐behavior specialists) on the Greater Antilles and overlaid these to estimate ecomorph community completeness (ECC) over the landscape. We then tested for differences in environmental parameter spaces among islands for real and cross‐fitted ECC values to see whether the underlying assembly filters are deterministic (i.e., similar among islands). We then compared information‐theoretic models of climatic and landscape parameters among Greater Antillean islands and inferred whether body mass as functional trait determines ECC. We found areas with high ECC to be strongly correlated with environmental filters, partly related to elevation. The environmental parameters influencing high ECC differed among islands. With the exception of the Jamaican twig ecomorph (which we suspect to be misclassified), smaller ecomorphs were more restricted to higher elevations than larger ones which might reflect filtering on the basis of differential physiological restrictions of ecomorphs. Our results in Anolis show that local community assembly within adaptive island radiations of animals can be determined by environmental filtering of functional traits, independently from species composition and realized environmental niche space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号