首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ornaments can evolve to reveal individual quality when their production/maintenance costs make them reliable as ‘signals’ or if their expression level is intrinsically linked to condition by some unfalsifiable mechanism (indices). The latter has been mostly associated with traits constrained by body size. In red ketocarotenoid-based colorations, that link could, instead, be established with cell respiration at the inner mitochondrial membrane (IMM). The production mechanism could be independent of resource (yellow carotenoids) availability, thus discarding costs linked to allocation trade-offs. A gene coding for a ketolase enzyme (CYP2J19) responsible for converting dietary yellow carotenoids to red ketocarotenoids has recently been described. We treated male zebra finches with an antioxidant designed to penetrate the IMM (mitoTEMPO) and a thyroid hormone (triiodothyronine) with known hypermetabolic effects. Among hormone controls, MitoTEMPO downregulated CYP2J19 in the bill (a red ketocarotenoid-based ornament), supporting the mitochondrial involvement in ketolase function. Both treatments interacted when increasing hormone dosage, indicating that mitochondria and thyroid metabolisms could simultaneously regulate coloration. Moreover, CYP2J19 expression was positively correlated to redness but also to yellow carotenoid levels in the blood. However, treatment effects were not annulated when controlling for blood carotenoid variability, which suggests that costs linked to resource availability could be minor.  相似文献   

2.
The ornaments used by animals to mediate social interactions are diverse, and by reconstructing their evolutionary pathways we can gain new insights into the mechanisms underlying ornamental innovation and variability. Here, we examine variation in plumage carotenoids among the true finches (Aves: Fringillidae) using biochemical and comparative phylogenetic analyses to reconstruct the evolutionary history of carotenoid states and evaluate competing models of carotenoid evolution. Our comparative analyses reveal that the most likely ancestor of finches used dietary carotenoids as yellow plumage colorants, and that the ability to metabolically modify dietary carotenoids into more complex pigments arose secondarily once finches began to use modified carotenoids to create red plumage. Following the evolutionary “innovation” that enabled modified red carotenoid pigments to be deposited as plumage colorants, many finch species subsequently modified carotenoid biochemical pathways to create yellow plumage. However, no reversions to dietary carotenoids were observed. The finding that ornaments and their underlying mechanisms may be operating under different selection regimes—where ornamental trait colors undergo frequent reversions (e.g., between red and yellow plumage) while carotenoid metabolization mechanisms are more conserved—supports a growing empirical framework suggesting different evolutionary patterns for ornaments and the mechanistic innovations that facilitate their diversification.  相似文献   

3.
Carotenoid-based ornaments may have evolved as a consequence of their costs of production, which would assure the reliability of the traits as signals of individual quality. Different costs due to carotenoid allocation to the signal have been proposed, considering the scarcity of these pigments at the environment (ecological cost) and their physiological properties that would trade against the maintenance of the organism. Carotenoids of many red ornaments (ketocarotenoids) are often the result of biotransformation of those pigments abundant in the diet (usually lutein and zeaxanthin). Some authors have suggested that such a conversion implies a cost relevant for signaling because it requires high levels of antioxidant vitamins in the tissues where biotransformation takes place. We explore this hypothesis in red-legged partridges (Alectoris rufa) by analyzing ketocarotenoids in the ornaments (bare parts) and carotenoids, vitamin A in different forms (free and esterified) and vitamin E in blood, liver and fat. Ketocarotenoids in ornaments (astaxanthin and papilioerythrinone) were not found in internal tissues, suggesting that they were directly transformed in the bare parts. However, ketocarotenoid levels where positively correlated with the levels of their precursors (zeaxanthin and lutein, respectively) in internal tissues. Interestingly, ketocarotenoid levels in bare parts negatively and positively correlated with vitamin A and E in the liver, respectively, the same links only being positive in blood. Moreover, retinyl and zeaxanthin levels in liver were negatively related. We hypothesize that storing substrate carotenoids in the main storage site (the liver) implies a cost in terms of regulating the level of vitamin A.  相似文献   

4.
Birds display a tremendous variety of carotenoid-based colors in their plumage, but the mechanisms underlying interspecific variability in carotenoid pigmentation remain poorly understood. Because vertebrates cannot synthesize carotenoids de novo, access to pigments in the diet is one proximate factor that may shape species differences in carotenoid-based plumage coloration. However, some birds metabolize ingested carotenoids and deposit pigments that differ in color from their dietary precursors, indicating that metabolic capabilities may also contribute to the diversity of plumage colors we see in nature. In this study, we investigated how the acquisition and utilization of carotenoids influence the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). We supplemented the diet of captive goldfinches with red carotenoids to determine whether males, which are typically yellow in color, were capable of growing red plumage. We also deprived cardinals of red dietary pigments to determine whether they could manufacture red carotenoids from yellow precursors to grow species-typical red plumage. We found that American goldfinches were able to deposit novel pigments in their plumage and develop a striking orange appearance. Thus, dietary access to pigments plays a role in determining the degree to which goldfinches express carotenoid-based plumage coloration. We also found that northern cardinals grew pale red feathers in the absence of red dietary pigments, indicating that their ability to metabolize yellow carotenoids in the diet contributes to the bright red plumage that they display.  相似文献   

5.
Carotenoids are molecules that birds are not able to synthesize and therefore, must be acquired through their diet. These pigments, besides their function of giving birds red and yellow colouration when deposited in feathers, seem to act as immune-stimulators and antioxidants in the organism. Hence, only the healthiest individuals would be able to express carotenoid-based ornaments to a larger extent without compromising the physiological functions of carotenoids. Various studies have reported that birds infected by parasites are paler than those uninfected, but, to our knowledge, none of them has assessed the possible effect of multiple infections by blood parasites on plumage colour. By comparing the yellow colour in the breast plumage of blue tits, Cyanistes caeruleus, between birds infected by different numbers of blood parasite genera, we found that those birds infected by more than one genus were paler than those parasitized just by one. In addition, we examined the potential role of carotenoid-based plumage colour of blue tits as a long-term indicator of other parameters of health status, such as body condition and immunoglobulin and heat shock protein (HSP) levels. Our results indicate that more brightly coloured birds had lower HSP70 levels than paler birds, but we did not find any significant association between colour and body condition or immunoglobulin levels. In addition, we found a positive significant association between Haemoproteus density of infection and HSP60 levels. Overall, these results support the role of carotenoid-based colours as indicators of health status in blue tits and show detrimental effects of parasitism on this character.  相似文献   

6.
Oxidative stress could be a key selective force shaping the expression of colored traits produced by the primary animal pigments in integuments: carotenoids and melanins. However, the impact of oxidative stress on melanic ornaments has only recently been explored, whereas its role in the expression of carotenoid-based traits is not fully understood. An interesting study case is that of those animal species simultaneously expressing both kinds of ornaments, such as the red-legged partridge (Alectoris rufa). In this bird, individuals exposed to an exogenous source of free radicals (diquat) during their development produced larger eumelanin-based (black) plumage traits than controls. Here, we show that the same red-legged partridges exposed to diquat simultaneously developed paler carotenoid-based ornaments (red beak and eye rings), and carried lower circulating carotenoid levels as well as lower levels of some lipids involved in carotenoid transport in the bloodstream (i.e., cholesterol). Moreover, partridges treated with a hormone that stimulates eumelanin production (i.e., alpha-melanocyte-stimulating hormone) also increased blood carotenoid levels, but this effect was not mirrored in the expression of carotenoid-based traits. The redness of carotenoid-based ornaments and the size of a conspicuous eumelanic trait (the black bib) were negatively correlated in control birds, suggesting a physiological trade-off during development. These findings contradict recent studies questioning the sensitivity of carotenoids to oxidative stress. Nonetheless, the impact of free radicals on plasma carotenoids seems to be partially mediated by changes in cholesterol metabolism, and not by direct carotenoid destruction/consumption. The results highlight the capacity of oxidative stress to create multiple phenotypes during development through differential effects on carotenoids and melanins, raising questions about evolutionary constraints involved in the production of multiple ornaments by the same organism.  相似文献   

7.
Many birds obtain colorful carotenoid pigments from the diet and deposit them into growing tissues to develop extravagant red, orange or yellow sexual ornaments. In these instances, it is often unclear whether all dietary pigments are used as integumentary colorants or whether certain carotenoids are preferentially excluded or incorporated into tissues. We examined the carotenoid profiles of three New World passerines that display yellow plumage coloration—the yellow warbler (Dendroica petechia), common yellowthroat (Geothlypis trichas) and evening grosbeak (Coccothraustes vespertinus). Using high-performance liquid chromatography, we found that all species used only one carotenoid—lutein—to color their plumage yellow. Analyses of blood carotenoids (which document those pigments taken up from the diet) in two of the species, however, revealed the presence of two dietary xanthophylls—lutein and zeaxanthin—that commonly co-occur in plants and animals. These findings demonstrate post-absorptive selectivity of carotenoid deposition in bird feathers. To learn more about the site of pigment discrimination, we also analyzed the carotenoid composition of lipid fractions from the follicles of immature yellow-pigmented feathers in G. trichas and D. petechia and again detected both lutein and zeaxanthin. This suggests that selective lutein incorporation in feathers is under local control at the maturing feather follicle.  相似文献   

8.
Carotenoid-based sexual ornaments are hypothesized to be reliable signals of male quality, based on an allocation trade-off between the use of carotenoids as pigments and their use in antioxidant defence against reactive oxygen species. Carotenoids appear to be poor antioxidants in vivo, however, and it is not clear whether variation in ornament expression is correlated with measures of oxidative stress (OXS) under natural conditions. We used single-cell gel electrophoresis to assay oxidative damage to erythrocyte DNA in the common yellowthroat (Geothlypis trichas), a sexually dichromatic warbler in which sexual selection favours components of the males' yellow 'bib'. We found that the level of DNA damage sustained by males predicted their overwinter survivorship and was reflected in the quality of their plumage. Males with brighter yellow bibs showed lower levels of DNA damage, both during the year the plumage was sampled (such that yellow brightness signalled current OXS) and during the previous year (such that yellow brightness signalled past OXS). We suggest that carotenoid-based ornaments can convey information about OXS to prospective mates and that further work exploring the proximate mechanism(s) linking OXS to coloration is warranted.  相似文献   

9.
Konrad Leniowski  Ewa Węgrzyn 《Ibis》2013,155(4):804-813
Carotenoid‐based plumage ornaments have the potential to signal individual condition and health in many species of birds. However, very little is known about the function of red plumage in woodpeckers. We assessed whether the red cap displayed by both male and female Middle Spotted Woodpeckers reflects individual quality, finding that the size of the cap is sex‐dependent, whereas the brightness of the cap correlates with the body condition of an individual. Furthermore, birds with brighter caps had larger clutches, suggesting that cap coloration may be an honest signal of parental quality in woodpeckers. Interestingly, more colourful individuals also occupied smaller territories, suggesting that territory size and territory quality may be inversely related in the Middle Spotted Woodpecker.  相似文献   

10.
The Hamilton–Zuk hypothesis predicts that ornament expression is a signal of the ability of individuals to resist parasite infection. Thus, across a population (i.e. between‐individuals) more ornamented individuals should have lower levels of parasitism. Numerous studies have tested this prediction and the results are mixed. One reason for these conflicting results may be that many studies have examined this relationship at the between‐individual level, which may be affected by confounding factors such as selective mortality. Using within‐subject centering we examined the relationship between male ornamentation and avian blood parasites at both the between‐ and within‐individual levels. These relationships focus on differences in genetically‐based resistance to parasites and the trade‐off in resource allocation between parasite resistance and ornament expression within an individual, respectively. We studied male common yellowthroats Geothlypis trichas, which have two plumage ornaments, a yellow, carotenoid‐based bib (throat and chest) and a black, melanin‐based facial mask. Surprisingly, within‐individuals, an increase in parasitism between years was associated with an increase in mask size and, potentially, greater concentration of carotenoids in the yellow feathers. This suggests that males may be able to tolerate an increase in parasitism and still increase ornament expression. In contrast, ornamentation was not related to parasitism at the between‐individual level. Thus, our study revealed relationships between ornaments and parasitism at the within‐individual level that were not present at the between‐individual level. Our results highlight the importance of examining both within‐ and between‐individual relationships as correlations between variables, such as ornaments and parasites, may depend on the level of analysis (i.e. within‐ or between‐individuals).  相似文献   

11.
Many of the brilliant plumage coloration displays of birds function as signals to conspecifics. One species in which the function of plumage ornaments has been assessed is the Eastern bluebird (Sialia sialis). Studies of a population breeding in Alabama (USA) have established that plumage ornaments signal quality, parental investment, and competitive ability in both sexes. Here we tested the additional hypotheses that (1) Eastern bluebird plumage ornamentation signals nest defense behavior in heterospecific competitive interactions and (2) individual variation in plumage ornamentation reflects underlying differences in circulating hormone levels. We also tested the potential for plumage ornaments to signal individual quality and parental investment in a population breeding in Oklahoma (USA). We found that Eastern bluebirds with more ornamented plumage are in better condition, initiate breeding earlier in the season, produce larger clutches, have higher circulating levels of the stress hormone corticosterone, and more ornamented males have lower circulating androgen levels. Plumage coloration was not related to nest defense behavior. Thus, plumage ornamentation may be used by both sexes to assess the physiological condition and parental investment of prospective mates. Experimental manipulations of circulating hormone levels during molt are needed to define the role of hormones in plumage ornamentation.  相似文献   

12.
Among birds, single cone sensitivities responsible for color vision appear surprisingly conserved even though chromatic signals vary greatly. Thus it is widely held that avian visual signal and receptor characteristics are rarely aligned. Analysis of a diverse passerine clade (Passerida) with characteristically ultraviolet-sensitive (UVS) vision revealed that plumage carotenoid reflectance spectra matched cone maximal sensitivities at several levels: (1) plumage carotenoid reflectance minima and maxima in aggregate aligned with the four UVS single cones; (2) the corresponding reflectance features of yellow (hydroxy- and ε-keto) and red (3- and 4-β-keto) carotenoid classes aligned with different combinations of cones; (3) pairs of reflectance features (e.g. one minimum and one maximum) of each carotenoid class aligned with pairs of (opponent) cones that evoke chromatic perception; (4) passerid plumage carotenoids aligned more closely to their own (UVS) visual system than to the distinctive homologous cone classes of the violet-sensitive system found in other birds. The ubiquitous occurrence of plumage carotenoids ipso facto demonstrates that alignments of avian visual signals and receptors are widespread, and provides novel evidence that carotenoids are important to avian communication. Moreover, alignment of different physical spectra to different cone combinations in a fixed receptor array provides a straightforward mechanism that accommodates signal diversity within the context of a relatively conserved visual system. The distinct patterns of variation and alignment observed for yellow versus red carotenoids further suggest that these pigment classes convey different physical aspects of content, which may foster carotenoid-based plumage diversity through signal design trade-offs.  相似文献   

13.
Avian plumage represents some of the greatest diversity in integument coloration of all animals. Plumage signals are diverse in function, including those that allow for assessing potential mates or the mitigation of agonistic interactions between rivals. Many bird species possess multiple ornamental traits that have the potential to serve as multiple or redundant signals. For example, male golden‐winged warblers (Vermivora chrysoptera) have brilliant carotenoid‐based yellow crowns, melanin‐based black throats, and structurally based white patches on their outer tail feathers. Using a correlative approach, we investigated whether plumage ornaments have the potential to reliably signal ability to acquire higher quality territory, aggressive response to simulated territorial intrusions, and reproductive success. We found that both crown chroma and tail brightness were significantly related to habitat quality and aggression; more ornamented birds held territories with higher quality habitat and were less aggressive toward simulated conspecific stimuli. Older birds sang less threatening songs than younger birds and were more likely to sing their mate attraction song type (type 1) rather than songs typically reserved for agonistic interactions (type 2). Finally, despite our previous research demonstrating that habitat strongly predicts reproductive success in this warbler population, we found no evidence of a direct link between ornamentation and reproductive success. Overall, these data suggest that younger males, and those with lower quality ornaments, compensate with more aggressive behaviors. Additional research is needed to investigate the dynamics between behavioral traits and ornaments to better understand complex signaling and how golden wing signals function in conspecific interactions (male–male interactions and mate‐choice).  相似文献   

14.
Darwin introduced the idea that ornamental secondary sexual traits have evolved in response to female preferences for showy males. Among such traits, yellow and red carotenoid-based ornaments have been considered as particularly good candidates for explaining why and how females would benefit from mating with showy partners. Because carotenoids can be used for promotion of both health and appearance, colourful male ornaments should honestly reveal the vigour of the bearers. Two recent experiments with birds now show how allocation of bodily carotenoids to sexual signalling is traded off against the use of carotenoids for boosting immune function.  相似文献   

15.
Carotenoid-based plumage coloration of birds has been hypothesized to honestly reflect individual quality, either because carotenoids are difficult to acquire via food or because of a trade-off in allocation of carotenoids between maintenance and signaling functions. We tested whether differential foraging ability is a necessary precondition for maintaining individual differences in carotenoid-based plumage coloration in male greenfinches (Carduelis chloris). Wild-caught birds were brought into captivity, where half of them were supplemented with carotenoids while the other half was maintained on a carotenoid-poor diet. Color of the yellow parts of tail feathers, grown under natural conditions, was compared with that of the replacement feathers, grown in captivity. Carotenoid supplementation increased feather chroma (saturation). Color of wild-grown feathers significantly correlated with the color of lab-grown feathers. This result demonstrates the existence of a significant component of variation in carotenoid coloration, which reflects physiological qualities or genetic differences among individuals independent of foraging ability. Among both experimental groups, plasma carotenoid concentration during feather growth strongly correlated with chroma of the feathers grown in captivity. This indicates that carotenoid-based plumage coloration can reveal circulating carotenoid levels over a very wide range of concentrations, suggesting the ample signaling potential of such a mechanism.  相似文献   

16.
Saks L  Ots I  Hõrak P 《Oecologia》2003,134(3):301-307
Hypotheses of parasite-mediated sexual selection (PMSS) propose that elaborate male ornaments have evolved due to female preferences. Females would benefit from mating with more ornamental males if males' ornamentation signals their health status and ability to provide parasite resistance genes for the offspring. Carotenoid-based plumage coloration of birds has been hypothesised to honestly reflect an individual's health status due to trade-off in allocation of carotenoids between maintenance and signalling functions. The prediction of this hypothesis, namely that individuals with brighter plumage are able to mount stronger immune responses against novel antigens and reveal generally better health state, was tested in captive male greenfinches (Carduelis chloris). Greenfinches with brighter yellow breast feathers showed stronger humoral immune response against novel antigen (SRBC) while no relationship between plumage coloration and an estimate of cell-mediated immune responsiveness (PHA response) was detected. Elaborately ornamental individuals had better general health state as indicated by the negative correlations between plumage brightness and heterophil haemoconcentration. Consistent with the concept of PMSS, these results suggest that carotenoid-based plumage coloration in greenfinches honestly signals immunocompetence and health status.  相似文献   

17.
Carotenoid pigments are commonly used as colorants of feathers and bare parts by birds. However, parrots (Aves: Psittaciformes) use a novel class of plumage pigments (called psittacofulvins) that, like carotenoids, are lipid-soluble and red, orange, or yellow in color. To begin to understand how and why parrots use these pigments and not carotenoids in their feathers, we must first describe the distribution of these two types of pigments in the diet, tissues, and fluids of these birds. Here, we studied the carotenoid content of blood in five species of parrots with red in their plumage to see if they show the physiological ability to accumulate carotenoids in the body. Although Scarlet (Ara macao) and Greenwing Macaws (Ara chloroptera) and Eclectus (Eclectus roratus), African Gray (Psittacus erithacus) and Blue-fronted Amazon (Amazona aestiva) Parrots all use psittacofulvins to color their feathers red, we found that they also circulated high concentrations of both dietary (lutein, zeaxanthin, beta-cryptoxanthin) and metabolically derived (anhydrolutein, dehydrolutein) carotenoids through blood at the time of feather growth, at levels comparable to those found in many other carotenoid-colored birds. These results suggest that parrots have the potential to use carotenoids for plumage pigmentation, but preferentially avoid depositing them in feathers, which is likely under the control of the maturing feather follicle. As there is no evidence of psittacofulvins in parrot blood at the tune of feather growth, we presume that these pigments are locally synthesized by growing feathers within the follicular tissue.  相似文献   

18.
Allocation trade-offs of carotenoids between their use in the immune system and production of integumentary colouration have been suggested as a proximate mechanism maintaining honesty of signal traits. We tested how dietary carotenoid supplementation, immune activation and immune suppression affect intensity of coccidian infection in captive greenfinches Carduelis chloris, a passerine with carotenoid-based plumage. Immune activation with phytohaemagglutinin (PHA) decreased body mass among birds not supplemented with lutein, while among the carotenoid-fed birds, PHA had no effect on mass dynamics. Immune suppression with dexamethasone (DEX) induced loss of body mass and reduced the swelling response to PHA. DEX and PHA increased the concentration of circulating heterophils. Lutein supplementation increased plasma carotenoid levels but had no effect on the swelling response induced by PHA. PHA and DEX treatments did not affect plasma carotenoids. Immune stimulation by PHA suppressed the infection, but only among carotenoid-supplemented birds. Priming of the immune system can thus aid in suppressing chronic infection but only when sufficient amount of carotenoids is available. Our experiment shows the importance of carotenoids in immune response, but also the complicated nature of this impact, which could be the reason for inconsistent results in studies investigating the immunomodulatory effects of carotenoids. The findings about involvement of carotenoids in modulation of an immune response against coccidiosis suggest that carotenoid-based ornaments may honestly signal individuals’ ability to manage chronic infections.  相似文献   

19.
The Pin-tailed Manakin (Ilicura militaris) is a small, sexually dimorphic, frugivorous suboscine songbird (Pipridae; Passeriformes; Aves) endemic to the Atlantic Forest of Brazil. A variant individual of this species was recently described in which the red patches that characterise the male's Definitive plumage were replaced by orange-yellow ones. We show here that the pigments in the feathers of the colour variant are common dietary carotenoids (zeaxanthin, beta-cryptoxanthin), not carotenoids synthesised by birds, lending support to the suggestion that the individual is a colour mutant lacking the capability to transform yellow dietary pigments into the red pigments normally present in these feathers. By comparison, the yellow crown feathers of a close relative, the Golden-winged Manakin (Masius chrysopterus), contained predominantly endogenously produced epsilon-caroten-3'-ones. Surprisingly, the normal-coloured feathers of the male Pin-tailed Manakin owe their red hue to rhodoxanthin, an unusual carotenoid more commonly found in plants, rather than 4-keto-carotenoids typically found in red plumages and found lacking in previously characterised bird colour variants. The implication is that birds, like the tilapia fish, may be able to synthesise this unusual pigment endogenously from dietary precursors. A newly described carotenoid, 6-hydroxy-epsilon,epsilon-carotene-3,3'-dione, here named piprixanthin, present in the red feathers of the Pin-tailed Manakin, provides a plausible intermediate between epsilon,epsilon-carotene-3,3'-dione (canary-xanthophyll B), a bright yellow pigment found in this and other songbirds, and rhodoxanthin. It is apparent that pigeons (Columbidae, Columbiformes) also have the capability to produce rhodoxanthin, and a structurally related pigment, endogenously. The ability to synthesise rhodoxanthin might have arisen at least twice in birds.  相似文献   

20.
1.  Female preferences for particular male ornaments may shift between populations as a consequence of ecological differences that change the reliability and detectability of the ornament, but few studies have examined how ornaments function in different populations.
2.  We examined the signalling function of male plumage ornaments in a warbler, the common yellowthroat ( Geothlypis trichas ), breeding in New York (NY) and Wisconsin (WI), USA. Males have two prominent ornaments: a black facial mask pigmented with melanin and a yellow bib pigmented by carotenoids. Previous studies in WI indicate that the size of the mask, and not the bib, is primarily related to female choice and male reproductive success. In NY, however, the pattern is reversed and attributes of the bib (size and colour), and not the mask, are the target of sexual selection.
3.  We found that brightness of the yellow bib was the best signal of humoral immunity (immunoglobulin G) in NY and mask size was the best signal in WI, after controlling for breeding experience and capture date. Thus, similar aspects of male quality appeared to be signalled by different ornaments in different populations.
4.  There was no difference between populations in the level of plasma carotenoids or the prevalence of malarial parasites, which may affect the costs and benefits of choosing males with particular ornaments in each location.
5.  Even though females in different populations prefer different ornaments produced by different types of pigments, these ornaments appear to be signalling similar aspects of male quality. Our results caution against inferring the function of particular ornaments based simply on their type of pigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号