首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
The Cuban Macaw Ara tricolor was a species of macaw native to Cuba and Isla de la Juventud in the Caribbean that became extinct in the 1860s. Morphologically, it was similar to, but distinctively smaller than, the large red macaws – Scarlet Macaw Ara macao and Red‐and‐green Macaw Ara chloropterus. A close affinity with the Scarlet Macaw has been suggested based on plumage similarities. In this study we use complete mitochondrial genome sequences to examine the phylogenetic position of the Cuban Macaw. Our results do not indicate a sister‐species relationship with the Scarlet Macaw but place the Cuban Macaw as sister to the two red species and the two large green macaws, the Military Macaw Ara militaris and the Great Green Macaw Ara ambiguus. Divergence estimates suggests that the Cuban Macaw separated from this group approximately 4 million years ago.  相似文献   

2.
Using mitochondrial and nuclear markers species identification was conducted in the case of seized feathers. Earlier, we had sequenced cytochrome c oxidase subunit I (COI) both from 10 seized specimens and 43 validation specimens from captive macaws belonging to 4 Ara species (A. macao, A. chloropterus, A. ararauna, and A. ambiguus) and identified 19 haplotypes based on COI sequences. Species-level identification using Barcode of Life Data Systems showed that seized feathers shared the highest similarity with scarlet macaws (A. macao), and this result was supported by the tree-base identification with high bootstrap values. Moreover, microsatellite profiles in AgGT17 locus showed that patterns of allelic distribution in the seized feathers were apparently distinct from those of red-and-green macaw (A. chloropterus), but were overlapped with those of A. macao, suggesting that all of seized feathers were derived from several individuals of A. macao. We also determined the parentage of hybrid macaws by the combination of COI barcodes and microsatellite profiles. The technique presented here will contribute to forensic identification and future conservation of large macaws that have been lost due to deforestation.  相似文献   

3.
A phylogeographic analysis of the control region of mitochondrial DNA was done in 346 individuals of the red‐legged partridge Alectoris rufa (Linnaeus 1758), sampled throughout the species distribution range. The analysis indicated that there is no distinct intraspecific phylogeographical structure, in contrast to earlier studies with lower number of samples. The results are not in accord with the expected distribution of three A. rufa subspecies based on morphological characters (A. r. rufa, A. r. intercedens and A. r. hispanica). The results do not provide statistical support for the five groups (or management units) proposed in some earlier papers because the variation within populations is greater than that found among populations. The absence of a population structure might be a consequence of management activity, consisting of release into the field of individuals bred in farms with no control of their genetic identity and geographic origin. Only the north‐west Iberian populations show a weak population structure, suggesting that A. r. hispanica may have suffered less human influence.  相似文献   

4.
Trinidad offers a unique study system within the Caribbean to assess the processes and patterns of amphibian speciation. We used mitochondrial DNA sequences to investigate the phylogenetic relationships and patterns of intraspecific genetic variation of Mannophryne trinitatis from Trinidad. Molecular clock estimates point to a genetic split between M. trinitatis and its sister species, M. venezuelensis, dating to the Late Miocene (c. 7–8 Mya), suggesting vicariance as a means of speciation when Trinidad pulled apart from northern Venezuela. M. trinitatis phylogenetic population analyses from ten Northern Range and four Central Range localities recovered three well‐resolved clades: a larger clade formed by haplotypes from Northern Range localities and two additional clades, one formed by haplotypes from the Central Range and another including haplotypes from Northern Range localities and one haplotype from the Central Range. Overall, our results show that the genetic diversity in M. trinitatis is not geographically structured but it is distributed among the various Northern and Central Range localities. In congruence with the vicariance speciation hypothesis, we attribute M. trinitatis present distribution and lack of genetic structure to multiple admixture events caused by climate changes that severely affected the topology of Trinidad throughout the Pliocene/Pleistocene periods.  相似文献   

5.
Genetic diversity provides insight into heterogeneous demographic and adaptive history across organisms’ distribution ranges. For this reason, decomposing single species into genetic units may represent a powerful tool to better understand biogeographical patterns as well as improve predictions of the effects of GCC (global climate change) on biodiversity loss. Using 279 georeferenced Iberian accessions, we used classes of three intraspecific genetic units of the annual plant Arabidopsis thaliana obtained from the genetic analyses of nuclear SNPs (single nucleotide polymorphisms), chloroplast SNPs, and the vernalization requirement for flowering. We used SDM (species distribution models), including climate, vegetation, and soil data, at the whole‐species and genetic‐unit levels. We compared model outputs for present environmental conditions and with a particularly severe GCC scenario. SDM accuracy was high for genetic units with smaller distribution ranges. Kernel density plots identified the environmental variables underpinning potential distribution ranges of genetic units. Combinations of environmental variables accounted for potential distribution ranges of genetic units, which shrank dramatically with GCC at almost all levels. Only two genetic clusters increased their potential distribution ranges with GCC. The application of SDM to intraspecific genetic units provides a detailed picture on the biogeographical patterns of distinct genetic groups based on different genetic criteria. Our approach also allowed us to pinpoint the genetic changes, in terms of genetic background and physiological requirements for flowering, that Iberian A. thaliana may experience with a GCC scenario applying SDM to intraspecific genetic units.  相似文献   

6.
Aim To investigate the population history and demographics of Jerdon’s pitviper, Protobothrops jerdonii, and elucidate how the unique physical conditions and heterogeneous mountain environments resulting from the uplift of the Tibetan Plateau shaped the genetic diversity and evolutionary history of the species. Location China and Vietnam. Methods We sequenced and analysed a total of 1752 base pairs from two mitochondrial genes, cytochrome b (cyt b) and NADH dehydrogenase subunit (ND4), for 81 specimens sampled from 27 localities across the species’ range, and a total of 464 base pairs from two nuclear genes for 28 representative samples from all mitochondrial DNA lineages. Based on these data, we constructed the genealogical relationships and estimated the divergence times of the mitochondrial DNA clades. Results The mitochondrial DNA results revealed the existence of five distinct, strongly supported and geographically structured DNA lineages within populations of P. jerdonii that are paraphyletic with respect to Protobothrops xiangchengensis. Estimation of divergence dates suggested that P. jerdonii possibly evolved in the western Hengduan Mountains region c. 6.6 Ma in the late Miocene. Nuclear DNA data did not provide sufficient resolution to distinguish the mitochondrial DNA lineages. Main conclusions Based on the present‐day distribution and intraspecific genealogy, the evolutionary history of P. jerdonii can be explained by a pattern of dispersal followed by vicariance. All lines of evidence suggest that historical biogeographical factors, particularly the north–south orientation of the higher mountains, as well as low‐elevation areas in western China, had the greatest influence on the population structure, lineage formation and species distribution of this snake. However, highly heterogeneous habitats and glacial cycles appear to have affected patterns of intraspecific differentiation. While our mitochondrial data provide evidence for clear phylogeographical structure, our small sampling of nuclear genes does not, suggesting that nuclear markers may not have had sufficient time to coalesce to match patterns observed in the mitochondrial data.  相似文献   

7.
Phylogenetic and phylogeographic patterns of amphisbaenians are poorly known. Molecular data from mitochondrial and nuclear loci are particularly needed for amphisbaenian phylogeny and taxonomy because their specializations to subterranean habits make morphology poorly informative and the occurrence of cryptic species probable. The Mediterranean genus Blanus includes five species – three of them have been recently studied mainly at the mitochondrial level. In this study, we collected mitochondrial (16S and nd4) and nuclear (mc1r and pomc) sequences from 49 specimens, including multiple individuals for each of the five species. We used multilocus coalescent‐based species‐tree inference and single‐gene analyses to estimate phylogenetic relationships among Blanus and to assess patterns of intraspecific differentiation within all the five species. Species‐tree and single‐gene phylogenies provided strong support for the Anatolian worm lizard B. strauchi lying outside a clade comprising all other congeners, with a sister relationship between the Iberian clade (B. cinereus and B. mariae) and the North African clade (B. tingitanus and B. mettetali). Mitochondrial and nuclear data supported the genetic distinctiveness of the recently described B. mariae and also indicated that the distribution of this species is wider than previously known and overlaps with B. cinereus in central Portugal. Blanus tingitanus showed two phylogeographic groups, from the northern and the southern portion of the range, respectively, having high mitochondrial and nuclear divergence and a possible contact zone in northwestern Morrocco. Finally, high genetic variation was found within B. mettetali and B. strauchi, suggesting in the latter case, the occurrence of cryptic taxa to be tested by further research.  相似文献   

8.
Cabot’s tragopan (Tragopan caboti) is a pheasant endemic to southeast China and is protected under both national and global legislation due to ongoing decline in population size and increased habitat fragmentation. We investigated the phylogeographic patterns and examined the consistency between evolutionary units and assumed subspecies taxonomy in this species. Six populations across the whole species presenting a wide distribution range were sampled and two mitochondrial DNA segments (control region, CR and cytochrome b, cyt b) were used in this study. The results demonstrated a high level of genetic diversity (h = 0.97 in CR and 0.78 in cyt b) and significant differentiation among populations. Phylogenetic analyses strongly indicated two reciprocally monophyletic clades named the “West group” and “East group” that were not consistent with the present subspecies regional distribution. The divergence time between the two groups was estimated to be around 5.54 × 105–8.7 × 105 years ago, and the expansion times of the two groups were close (about 3 × 105 years ago), indicating the effect of glaciation in intraspecific differentiation. Based on the results of genetic analyses combined with geographic isolation and distinct population history, our findings suggest that two management units (MUs) should be defined in T. caboti for conservation.  相似文献   

9.
Pairs of obligate social parasites and their hosts, where some of the parasites have recently diverged from their host through intraspecific social parasitism, provide intriguing systems for studying the modes and processes of speciation. Such speciation, probably in sympatry, has also been propounded in the ant Myrmica rubra and its intraspecific social parasite. In this species, parasitism is associated with queen size dimorphism, and the small microgyne has become a social parasite of the large macrogyne. Here, we investigated the genetic divergence of the host and the parasite queen morphs in 11 localities in southern Finland, using nuclear and mitochondrial markers of queens and workers. We formulated and tested four speciation‐related hypotheses that differed in the degree of genetic divergence between the morphs. The queen morphs were genetically distinct from each other with little hybridization. In the nuclear data, when localities were nested within queen morphs in the hierarchical amova , 39% of the genetic variation was explained by the queen morph (standardized F'CT = 0.63, uncorrected FCT = 0.39), whereas 18% was explained by the locality (F'SC = 0.39, FSC = 0.29). This result corroborated the hypothesis of advanced sympatric speciation. In contrast, the mitochondrial DNA could not settle between the hierarchical levels of locality and queen morph, thus substantiating equally the hypotheses of incipient and advanced sympatric speciation. Together, our results support the view that the microgynous parasite has genetically diverged from its macrogynous host to the level of a nascent species.  相似文献   

10.
The endemic fauna of the Comoro Archipelago is composed of a mixture of taxa originating from Africa and Madagascar. Bats are the only native land dwelling mammals on this archipelago, but the biogeographical origins for the vast majority of species within this group are ambiguous. We report here genetic analyses based on two mitochondrial DNA markers to infer the origin of Comorian bats belonging to a reputed species complex of Miniopterus that is further distributed across Africa and Madagascar. Phylogenetic reconstructions show that east African M. minor are not closely related to the insular Miniopterus of Madagascar and the Comoros (Grande Comore and Anjouan). The latter cluster into two distinct, monophyletic clades (Clade 1 and Clade 2). Representatives of these clades occur sympatrically both on the Comoros and on Madagascar, and are distinguished by a large genetic distance (K2P: 9.9% for cytochrome b). No haplotypes are shared between any islands, suggesting the absence of contemporary gene flow. Populations of the widespread Clade 1 are furthermore characterized by a significant inter‐island structure (ΦCT = 0.249), and by high haplotype and nucleotide diversities (h = 0.90–0.98, π = 0.04–0.06). Demographic analyses of Clade 1 suggest secondary contact between two distinct phylogroups (Subclade 1 A and 1B) that reached Grande Comore and Anjouan, and a large, stable population with a long evolutionary history on Madagascar. These results and the current distribution of related lineages suggest that the Comoros were colonized independently at least two or three times by ancestors from Madagascar.  相似文献   

11.
Genetic variation at mitochondrial cytochrome b (cyt b) and D-loop region reveals the evidence of population sub-structuring in Indian populations of highly endangered primitive feather-back fish Chitala chitala. Samples collected through commercial catches from eight riverine populations from different geographical locations of India were analyzed for cyt b region (307 bp) and D-loop region (636–716 bp). The sequences of the both the mitochondrial regions revealed high haplotype diversity and low nucleotide diversity. The patterns of genetic diversity, haplotypes networks clearly indicated two distinct mitochondrial lineages and mismatch distribution strongly suggest a historical influence on the genetic structure of C. chitala populations. The baseline information on genetic variation and the evidence of population sub-structuring generated from this study would be useful for planning effective strategies for conservation and rehabilitation of this highly endangered species.  相似文献   

12.
Once widely distributed throughout the lowland forests of Costa Rica, scarlet macaws (Ara macao) have been reduced to two major, geographically separated, populations along the Pacific slope. Past demographic declines raise conservation concerns regarding the detrimental effects of population fragmentation. This investigation aimed to evaluate the current status of scarlet macaws along the Pacific slope by examining levels of genetic variation and patterns of genetic structure within and among remnant populations. Statistical analyses using multilocus genotypes revealed strong differentiation between Central and South Pacific populations, suggesting local geographic barriers have historically restricted gene flow between these localities. High genetic diversity suggests neither population suffers from genetic erosion, likely resulting from relatively large population sizes and high dispersal capacity and longevity. However, evidence of disequilibrium within the Central Pacific population infers anthropogenic threats have disrupted natural population dynamics. These results advocate on focusing available resources on habitat restoration and nest protection, as a means to assist in reestablishing demographic stability and maintain the genetic health of wild scarlet macaws in Costa Rica.  相似文献   

13.
The endangered Cook’s petrel (Pterodroma cookii) is restricted to two separated populations at the extremes of its former range across New Zealand. Prior work revealed morphological, foraging, and reproductive isolation between these two remnant populations. To aid the conservation management of the species, additional information is required on the genetic structure of Cook’s petrel. We used mitochondrial DNA sequences (Cytochrome Oxidase subunit 1 gene), collected from 26 and 19 Cook’s petrel breeding on Little Barrier Island (LBI) and Codfish Island (CDF), respectively, for this preliminary study. We uncovered distinct population genetic structure with analysis of molecular variance suggesting genetic isolation of the populations. Levels of genetic variation were higher in the LBI population (four haplotypes present; h = 0.34 and π = 0.10) whereas the CDF population had only one haplotype that was distinct from the LBI population. Our results indicate that Cook’s petrel constitute two distinct management units for which conservation of genetic as well as behavioural and morphological diversity should be a priority. Further genetic studies using nuclear markers are recommended.  相似文献   

14.
Many macroalgae exhibit considerable intraspecific morphological variation, but whether such variation reflects phenotypic plasticity or underlying genetic differences is often poorly understood. We quantified both morphological and genetic variation of 96 plants from seven field sites across eastern South Island, New Zealand, to assess genetic differences between morphotypes of the southern bull kelp Durvillaea antarctica (Cham.) Har. Consistent DNA sequence differentiation across mitochondrial, plastid, and nuclear loci was correlated with two broadly sympatric morphotypes: “cape” and “thonged.” These ecologically, morphologically, and genetically distinct bull‐kelp lineages were previously considered to be environmentally determined phenotypes with no underlying genetic basis. Interestingly, the sheltered “cape” lineage appears essentially genetically uniform across its South Island range, whereas the exposed “thonged” lineage exhibits marked phylogeographic structure across its range. Results suggest that D. antarctica in New Zealand comprises two reproductively isolated species.  相似文献   

15.
We analyzed genetic diversity of 215 mitochondrial DNA (mtDNA) D‐loop sequences from seven populations of domesticated helmeted guinea fowl (Numida meleagris) in Nigeria and compared that with results of samples collected in Kenya (n = 4) and China (n = 22). In total, 241 sequences were assigned to 22 distinct haplotypes. Haplotype diversity in Nigeria was 0.693 ± 0.022. The network grouped most matrilines into two main haplogroups: A and B. There was an absence of a geographic signal, and two haplotypes dominated across all locations with the exception of the Kebbi population in the northwest of the country; AMOVA also confirmed this observation (FST = 0.035). The low genetic diversity may be a result of recent domestication, whereas the lack of maternal genetic structure likely suggests the extensive genetic intermixing within the country. Additionally, the differentiation of the Kebbi population may be due to a certain demographic history and/or artificial selection that shaped its haplotype profile. The current data do not permit us to make further conclusions; therefore, more research evidence from genetics and archaeology is still required.  相似文献   

16.

Background  

The forests of the upper Amazon basin harbour some of the world's highest anuran species richness, but to date we have only the sparsest understanding of the distribution of genetic diversity within and among species in this region. To quantify region-wide genealogical patterns and to test for the presence of deep intraspecific divergences that have been documented in some other neotropical anurans, we developed a molecular phylogeny of the wide-spread terrestrial leaflitter frog Eleutherodactylus ockendeni (Leptodactylidae) from 13 localities throughout its range in Ecuador using data from two mitochondrial genes (16S and cyt b; 1246 base pairs). We examined the relation between divergence of mtDNA and the nuclear genome, as sampled by five species-specific microsatellite loci, to evaluate indirectly whether lineages are reproductively isolated where they co-occur. Our extensive phylogeographic survey thus assesses the spatial distribution of E. ockendeni genetic diversity across eastern Ecuador.  相似文献   

17.

Although the mitochondrial diversity of Abrothrix olivacea has been widely studied, the phylogeographic structure and the historical demography of this species are still not fully comprehended. With the aim of better understanding these aspects, a 801 bp fragment of the Cytb gene sampled in 416 individuals (202 from Argentina and 214 from Chile) collected at 103 localities (46 from Argentina and 57 from Chile) was analyzed. This represents the most geographically and numerically widespread sampling used until now to study the mitochondrial variation of this species. The results obtained indicate that the mitochondrial diversity of A. olivacea is structured in four main phylogroups with barely overlapped geographic ranges that replace each other mostly latitudinally from northern Chile (ca. 18° S) to the Isla Grande of Tierra del Fuego (ca. 56° S). In turn, each mitochondrial phylogroup shows distinct crown ages and signals of asynchronous population expansions. Overall, the results obtained here improve the delimitation of the geographic ranges of the intraspecific mitochondrial lineages of this species and suggest that its subspecific taxonomy require an exhaustive revision. In addition, the pattern of genetic structure described here for the Patagonian-Fuegian populations differs from that evidenced by the characterization of nuclear variation. This mito-nuclear discordance could be associated with neutral demographic dynamics and the vagaries of allele sorting and suggest that the evolutionary history of this species could be more complex than that reconstructed from the isolated study of mitochondrial or nuclear variability.

  相似文献   

18.
The northwestern Indian Ocean harbors a number of larger marine vertebrate taxa that warrant the investigation of genetic population structure given remarkable spatial heterogeneity in biological characteristics such as distribution, behavior, and morphology. Here, we investigate the genetic population structure of four commercially exploited shark species with different biological characteristics (Carcharhinus limbatus, Carcharhinus sorrah, Rhizoprionodon acutus, and Sphyrna lewini) between the Red Sea and all other water bodies surrounding the Arabian Peninsula. To assess intraspecific patterns of connectivity, we constructed statistical parsimony networks among haplotypes and estimated (1) population structure; and (2) time of most recent population expansion, based on mitochondrial control region DNA and a total of 20 microsatellites. Our analysis indicates that, even in smaller, less vagile shark species, there are no contemporary barriers to gene flow across the study region, while historical events, for example, Pleistocene glacial cycles, may have affected connectivity in C. sorrah and R. acutus. A parsimony network analysis provided evidence that Arabian S. lewini may represent a population segment that is distinct from other known stocks in the Indian Ocean, raising a new layer of conservation concern. Our results call for urgent regional cooperation to ensure the sustainable exploitation of sharks in the Arabian region.  相似文献   

19.
Free‐living nematodes are ubiquitous and highly abundant in terrestrial and aquatic environments, where they sustain ecosystem functioning by mineralization processes and nutrient cycling. Nevertheless, very little is known about their true diversity and intraspecific population structure. Recent molecular studies on marine nematodes indicated cryptic diversity and strong genetic differentiation of distinct populations, but for freshwater nematode species, analogous studies are lacking. Here, we present the first extensive molecular study exploring cryptic species diversity and genetic population structure of a widespread freshwater nematode morphospecies, Tobrilus gracilis, from nine postglacially formed European lakes. Taxonomic species status of individuals, analysed for fragments of the mitochondrial COI gene and for the large (LSU) and small (SSU) ribosomal subunits, were determined by morphological characteristics. Mitochondrial and nuclear markers strongly supported the existence of three distinct genetic lineages (Tg I–III) within Tobrilus gracilis, suggesting that this morphospecies indeed represents a complex of highly differentiated biological species. High genetic diversity was also observed at the population level. Across the nine lakes, 19 mitochondrial, and seven (LSU) and four (SSU) nuclear haplotypes were determined. A phylogeographical analysis revealed remarkable genetic differentiation even among neighbouring lake populations for one cryptic lineage. Priority and persistent founder effects are possible explanations for the observed population structure in the postglacially colonized lakes, but ask for future studies providing direct estimates of freshwater nematode dispersal rates. Our study suggests therefore that overall diversity of limnetic nematodes has been so far drastically underestimated and challenges the assumed ubiquitous distribution of other, single freshwater nematode morphospecies.  相似文献   

20.
On evolutionary timescales, sea level oscillations lead to recurrent spatio‐temporal variation in species distribution and population connectivity. In this situation, applying classical concepts of biogeography is challenging yet necessary to understand the mechanisms underlying biodiversity in highly diverse marine ecosystems such as coral reefs. We aimed at studying the outcomes of such complex biogeographic dynamics on reproductive isolation by sampling populations across a wide spatial range of a species‐rich fish genus: the sergeants (Pomacentridae: Abudefduf). We generated a mutlilocus data set that included ten morpho‐species from 32 Indo‐West Pacific localities. We observed a pattern of mito‐nuclear discordance in two common and widely distributed species: Abudefduf sexfasciatus and Abudefduf vaigiensis. The results showed three regional sublineages (Indian Ocean, Coral Triangle region, western Pacific) in A. sexfasciatus (0.6–1.5% divergence at cytb). The other species, A. vaigiensis, is polyphyletic and consists of three distinct genetic lineages (A, B and C) (9% divergence at cytb) whose geographic ranges overlap. Although A. vaigiensis A and A. sexfasciatus were found to be distinct based on nuclear information, A. vaigiensis A was found to be nested within A. sexfasciatus in the mitochondrial gene tree. A. sexfasciatus from the Coral Triangle region and A. vaigiensis A were not differentiated from each other at the mitochondrial locus. We then used coalescent‐based simulation to characterize a spatially widespread but weak gene flow between the two species. We showed that these fishes are good candidates to investigate the evolutionary complexity of the discrepancies between phenotypic and genetic similarity in closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号