首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Parasitism of the cabbage root fly, Delia radicum (L.) by the staphylinid Aleochara bilineata Gyllenhal and the cynipid Trybliographa rapae Westwood was examined in a cabbage monoculture and a mixed stand of cabbage undersown with white clover. Number of overwintering cabbage root fly pupae per plant was consistently reduced in the mixed stand, and the incidence of plants attacked by cabbage root fly was either reduced or not different in the mixed stand compared to cabbage monoculture. For both parasitoids, the probability of D. radicum attacked plants having at least one parasitized pupa increased with density of cabbage root fly pupae around the plant. For A. bilineata, this positive relation between presence of parasitism and host density was consistently stronger in cabbage monoculture than in cabbage undersown with clover. Location of a host plant by T. rapae was not consistently affected by the presence of clover. D. radicum attacked plants situated in the cabbage and clover mixture were found by T. rapae as easily as in cabbage monoculture. Overall, the total risk of parasitism for a cabbage root fly pupa by A. bilineata was reduced in the mixed stand compared to the cabbage monoculture, whereas the risk of parasitism by T. rapae was not consistently affected by clover. For both parasitoids, intensity of parasitism showed a variable relationship with host density on individual plants attacked by the cabbage root fly. Overall, in spite of consistently lower total density of pupae in the mixed cabbage—clover than in cabbage monoculture, the density of unparasitized pupae was reduced by the presence of non-host plants only in two of the four experiments. The results emphasize the need to include not only herbivore and crop, but also other plant species as well as natural enemies when evaluating management methods.  相似文献   

3.
Telenomus busseolae Gahan (Hymenoptera: Scelionidae) is an important egg parasitoid of noctuid stem borers of gramineous crops, attacking egg masses of Sesamia spp. Under natural conditions, and whatever the host species attacked, these egg masses are generally concealed under the leaf sheaths or other narrow spaces, and vary greatly in size. In the work presented here, the influence of host patch size (4, 8, 16, 32, 64, or 128 eggs per mass) on the sex ratio and sex sequence pattern of ovipositing T. busseolae was investigated in the laboratory using Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae) as host. The results are similar to those described for other parasitoids of aggregated hosts, and are in accordance with the Local Mate Competition model. With increasing egg mass size, the overall sex ratio (proportion of males) decreased, although additional males were laid at the end of the sequence in the larger masses (64 and 128 eggs). Sex sequence pattern always followed a males‐first strategy, i.e., with a higher proportion of males at the beginning, but the whole sex ratio sequence was influenced by the size of the egg mass. Such results in a parasitoid of concealed eggs are compared to those observed in parasitoids of exposed eggs and discussed in terms of parasitoid reproductive strategies and evolutionary adaptations.  相似文献   

4.
Plants can defend themselves against herbivorous insects before the larvae hatch from eggs and start feeding. One of these preventive defence strategies is to produce plant volatiles, in response to egg deposition, which attract egg parasitoids that subsequently kill the herbivore eggs. Here, we studied whether egg deposition by Pieris brassicae L. (Lepidoptera: Pieridae) induces Brussels sprouts plants to produce cues that attract or arrest Trichogramma brassicae Bezdeko (Hymenoptera: Trichogrammatidae). Olfactometer bioassays revealed that odours from plants with eggs did not attract or arrest parasitoids. However, contact bioassays showed that T. brassicae females were arrested on egg‐free leaf squares excised from leaves with 72 h‐old egg masses, which are highly suitable for parasitisation. We tested the hypothesis that this arresting activity is due to scales and chemicals deposited by the butterflies during oviposition and which are thus present on the leaf surface in the vicinity of the eggs. Indeed, leaf squares excised from egg‐free leaves, but contaminated with butterfly deposits, arrested the wasps when the squares were tested 1 day after contamination. However, squares from egg‐free leaves with 72 h‐old butterfly deposits had no arresting activity. Thus, we exclude that the arresting activity of the leaf area near 72 h‐old egg masses was elicited by cues from scales and other butterfly deposits. We suggest that egg deposition of P. brassicae induces a change in the leaf surface chemicals in leaves with egg masses. A systemic induction extending to an egg‐free leaf neighbouring an egg‐carrying leaf could not be detected. Our data suggest that a local, oviposition‐induced change of leaf surface chemicals arrests T. brassicae in the vicinity of host eggs.  相似文献   

5.
Egg distribution in herbivorous beetles can be affected by bottom-up (host plant), and by top-down factors (parasitoids and predators), as well as by other habitat parameters. The importance of bottom-up and top-down effects may change with spatial scale.

In this study, we investigated the influence of host plant factors and habitat structure on egg distribution in the leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), a monophagous herbivore on Salvia pratensis L. (Lamiales: Lamiaceae), on four spatial scales: individual host plant, microhabitat, macrohabitat, and landscape. At the individual host plant scale we studied the correlation between egg clutch incidence and plant size and quality. On all other scales we analyzed the relationship between the egg clutch incidence of C. canaliculata and host plant percentage cover, host plant density, and the surrounding vegetation structure. Vegetation structure was examined as herbivores might escape egg parasitism by depositing their eggs on sites with vegetation factors unfavorable for host searching parasitoids.

The probability that egg clutches of C. canaliculata were present increased with an increasing size, percentage cover, and density of the host plant on three of the four spatial scales: individual host plant, microhabitat, and macrohabitat. There was no correlation between vegetation structure and egg clutch occurrence or parasitism on any spatial scale. A high percentage of egg clutches (38–56%) was parasitized by Foersterella reptans Nees (Hymenoptera: Tetracampidae), the only egg parasitoid, but there was no relationship between egg parasitism and the spatial distribution of egg clutches of C. canaliculata on any of the spatial scales investigated. However, we also discuss results from a further study, which revealed top-down effects on the larval stage.  相似文献   


6.
Native to eastern Asia, the brown marmorated stink bug (BMSB), Halyomorpha halys (Stål), has become a serious invasive pest in North America. Consequently, accurate assessment of parasitism rates under field conditions is critical for determining baseline parasitism rates of native egg parasitoids on BMSB, and for future evaluations of native or exotic parasitoid biological control release strategies and impacts. BMSB sentinel (laboratory-laid) egg masses have typically been used for this purpose, even though they could be providing misleading estimates of parasitoid activity. Accordingly, we compared the use of BMSB sentinel (laboratory-laid) and wild (naturally field-laid) egg masses in 2012 and 2013 to examine rates of parasitism and the parasitoid community composition of indigenous egg parasitoids in outdoor ornamental nurseries. Wild egg masses consistently had higher rates of parasitism than sentinel egg masses. In 2012, wild egg masses had a mean percent parasitism of 28.4% compared to 4.6% in sentinel egg masses, while in 2013 the difference between the two methods increased even further with a mean percent parasitism of 55.3% in wild egg masses compared to 0.8% in sentinel eggs. Furthermore, we found greater total numbers of parasitoids (889, 42) and greater species richness (seven, five), when using wild egg masses compared to sentinel egg masses, respectively. While sentinel egg masses provide a rapid and convenient way to assess the presence of natural enemies, our findings indicate that using sentinel egg masses could dramatically underestimate actual rates of parasitism and provide inaccurate estimates of parasitoid community composition. Future studies should address potential mechanisms underlying these patterns such as lack of certain host cues required by parasitoids in sentinel compared to wild egg masses.  相似文献   

7.
We evaluated how manyTrichogramma nubilale should be released at a single location to controlOstrinia nubilalis in sweet corn. Six 8.6×16 m plots received 18.4 to 2 090 ΦΦT. nubilale/SAI when plants were in the mid to late whorl stage, where SAI, surface area index, is the plant surface area/m2. To evaluate the potential control by our releases, we exposed laboratory-rearedO. nubilalis egg masses to the released parasitoids at 4 times after the release. When an egg mass was parasitized byT. nubilale, 75.7% of the eggs in the egg mass were parasitized. We developed an equation to estimate the percent of egg masses that a single female was expected to parasitize in a day (efficiency of parasitism) and female disappearance (death and dispersal) rates, if both were constant during our experiment. The exponential disappearance rate was −0.52±0.03 day−1, which implied that 40% of the remaining ΦΦ disappeared per day. The efficiency of parasitism was 0.050% parasitism/Φ/SAI/day, which implied that at least 351,000 ΦΦ/ha would be needed to achieve 90% parasitism. Clearly, forT. nubilale to be a successful biological control agent, efficiency of parasitism must be increased and disappearance rates must be reduced.   相似文献   

8.
Egg masses of Nezara viridula (L.) are commonly parasitized by Trissolcus basalis (Woll.), and we investigated the role of size of egg masses on parasitization by T. basalis. Sentinel egg masses were exposed to parasitism in the field for 6–7 days, when they were collected for evaluation of parasitoid emergence. We recorded the number of eggs per egg mass, the number of emerged hosts, and the number of empty and parasitized eggs. We calculated the proportion of attacked host egg masses (DE), the proportion of parasitized eggs per attacked egg mass (PE), and total parasitism (PI). The total number of egg masses exposed to parasitism was 330. The minimum, mean, and maximum egg mass sizes were 25, 75.2, and 111, respectively. DE and PE varied widely between different fields, and they were independent of egg mass size. In 14.2% of all parasitized egg masses, we found simultaneous emergence of T. basalis and N. viridula independently of host egg mass size. PE exhibited low variability compared with PI and DE, which were linearly related. PI and DE values from other field studies are consistent with the linear relationship, suggesting that PI is mostly related to the proportion of the DE. This also suggests that total parasitism is independent of egg mass size, of possible differences in plant species, and T. basalis density and strains.  相似文献   

9.
The structure of the parasitoid community on phytophagous insects can be affected by host plant properties, such as chemical compounds, trichomes, and glandular hairs. To clarify effects of host plants on herbivores and the parasitoid community, I examined the structure and dynamics of the parasitoid community associated with two species of Caloptilia moths (Lepidoptera: Gracillariidae) that feed on different Rhododendron species (Ericaceae) for 3 years in a temperate secondary forest in central Japan. Caloptilia azaleella had overlapping generations in summer and overwintered as larvae on leaves of R. macrosepalum. Caloptilia leucothoes also had overlapping generations in summer, but it did not overwinter on the deciduous shrub R. reticulatum. The parasitoid community of C. azaleella larvae and pupae was composed of 18 species, whereas that of C. leucothoes was composed of seven species. Five species of parasitoids attacked both Caloptilia species. The most abundant parasitoid, Apanteles cf. xanthostigma (Hymenoptera: Braconidae), more frequently attacked C. azaleella than C. leucothoes larvae. In contrast, another abundant parasitoid, Acrysocharoides sp. (Hymenoptera: Eulophidae), more frequently attacked C. leucothoes than C. azaleella larvae. This differential parasitism by the most abundant parasitoid species may be responsible for the differential structure and dynamics of the parasitoid community between the Caloptilia species. The host plant of C. azaleella, R. macrosepalum, more frequently trapped and killed parasitoids (of similar size to Acrysocharoides sp.) on the glandular hairs of leaves than did R. reticulatum. The differential effect of host plants on abundant parasitoids may be related to the differential parasitism by the two abundant parasitoids shared by the herbivore hosts.  相似文献   

10.
Abstract 1. As species shift their geographic distributions, new feeding interactions with natural enemies such as parasitoids, and resources such as host plants, may be established, and existing interactions may be severed. 2. The leaf mining moth Phyllonorycter leucographella (Zeller, 1850) (Lep.: Gracillariidae) first colonised the southern United Kingdom in the mid 1980s associated with its ancestral host plant Pyracantha coccinea M. Roem. (Rosaceae), which is widely cultivated in the U.K. The moth has since spread northwards to central Scotland and has been recorded feeding on a novel host plant, Crataegus monogyna L. 3. The combined effects of latitude and time since colonisation on parasitoid community responses to the arrival of this novel host were investigated across its U.K. range. The response of parasitoids to colonisation of C. monogyna was also investigated. 4. Both the observed richness of parasitoid species associated with P. leucographella, and the proportion of P. leucographella parasitised declined with latitude and towards the current range margin. A combination of a latitudinal gradient in parasitoid and alternative host species richness is likely to lead to the trends in species richness and parasitism observed. 5. Experimental host patches exposed to parasitism beyond the current range margin of P. leucographella experienced low levels of parasitism consistent with range‐margin populations, indicating an instantaneous response by native parasitoids to availability of the novel host. Parasitism levels and numbers of associated species in the U.K. were similar to those observed in the species’ native range in Turkey. 6. The host plant switch to C. monogyna was not associated with an altered parasitoid assemblage, but rates of parasitism were significantly higher on the novel host plant. 7. Alterations in the incidence and frequency of victim‐enemy interactions as species shift their geographic ranges may be key in determining rates of range expansion and the impact invading species have on ecological communities.  相似文献   

11.
Herbivory is known to increase the emission of volatiles, which attract natural enemies to herbivore‐damaged plants in laboratory and agricultural systems. We report on signalling through volatiles induced by Euschistus heros (F.) (Heteroptera: Pentatomidae) in two legumes that influence the attraction and retention of the egg parasitoid Telenomus podisi (Ashmead) (Hymenoptera: Scelionidae). Air‐borne extracts obtained from two host plants of E. heros, soybean, Glycine max, and pigeon pea, Cajanus cajan (Leguminosae), produce a different blend of emitted volatiles when attacked by adult males or females and nymphs of the pest species, compared with the undamaged plants. The same results were obtained when the plants were treated with extracted saliva of E. heros which had been mechanically introduced into the plants. This indicates that some substance in the saliva contributed to the release of the volatiles. Bioassays in a Y‐tube olfactometer with female T. podisi and treated plants confirmed the significant preference of the egg parasitoid for plants attacked by either males, females, or fourth instar nymphs of the pest species. On the other hand, volatile extracts obtained from soybean subjected to the velvetbean caterpillar, Anticarsia gemmatalis, a non‐host species for T. podisi, showed a different blend of volatiles compared to those obtained from plants subjected to E. heros. Additionally, the volatiles obtained from this plant–host complex were not attractive to T. podisi. These results indicate that E. heros causes an increase in the emission of specific plant volatiles, and that the induction is possibly caused by an elicitor present in the pest saliva. The possibility that these plant volatiles play an important role in the attraction and retention of the egg parasitoid T. podisi is discussed.  相似文献   

12.
The ‘enemy‐free space’ hypothesis predicts that herbivorous insects can escape their natural enemies by switching to a novel host plant, with consequences for the evolution of host plant specialisation. However, if natural enemies follow herbivores to their novel host plants, enemy‐free space may only be temporary. We tested this by studying the colonisation of the introduced tree Eucalyptus grandis (Hill) Maiden (Myrtaceae) by insects in Brazil, where various species of herbivores have added eucalyptus to their host plant range, which consists of native myrtaceous species such as guava. Some herbivores, for example, Thyrinteina leucoceraea Ringe (Lepidoptera: Geometridae), cause outbreaks in eucalyptus plantations but not on guava, possibly because eucalyptus offers enemy‐free space. We sampled herbivores (mainly Lepidoptera species) and natural enemies on eucalyptus and guava and assessed parasitism of Lepidoptera larvae on both host plant species during ca. 2 years. Overall, predators were encountered more frequently on guava than on eucalyptus. In contrast, parasitoids were encountered equally and parasitism rates of Lepidoptera larvae were similar on both host plants. This indicates that herbivores may escape some enemies by moving to a novel host plant. However, this escape may be temporary and may vary with time. We argue that studying temporal and spatial patterns of enemy‐free space and the response of natural enemies to host use changes of their herbivorous prey is essential for understanding the role of natural enemies in the evolution of host plant use by herbivorous arthropods.  相似文献   

13.
1. In natural ecosystems, plants containing hosts for parasitoids are often embedded within heterogeneous plant communities. These plant communities surrounding host‐infested plants may influence the host‐finding ability of parasitoids. 2. A release‐recapture‐approach was used to examine whether the diversity and structural complexity of the community surrounding a host‐infested plant influences the aggregation behaviour of the leaf‐miner parasitoid Dacnusa sibirica Telenga and naturally occurring local leaf‐miner parasitoids. Released and locally present parasitoids were collected on potted Jacobaea vulgaris Gaertn.plants infested with the generalist leaf‐miner Chromatomyia syngenesiae Hardy. The plants were placed in experimentally established plant communities differing in plant diversity (1–9 species) and habitat complexity (bare ground, mown vegetation, and tall vegetation). Additionally, parasitoids were reared out from host mines on the trap plants. 3. Plant diversity did not influence the mean number of recaptured D. sibirica or captures of other locally present parasitoids but the number of recaptured parasitoids was influenced by habitat complexity. No D. sibirica parasitoids were recaptured in the bare ground plots or plots with mown vegetation. The mean number of recaptured D. sibirica generally increased with increasing complexity of the plant community, whereas locally present parasitoids were captured more frequently in communities with more bare ground. There was a unimodal relationship between the number of reared out parasitoids and diversity of the surrounding vegetation with the highest density of emerged parasitoids at intermediate diversity levels. 4. The present study adds to the thus far limited body of literature examining the aggregation behaviour of parasitoids in the field and suggests that the preference of parasitoids to aggregate in complex versus simple vegetation is association specific and thus depends on the parasitoid species as well as the identity of the plant community.  相似文献   

14.
The host specificity of insect parasitoids and herbivores is thought to be shaped by a suite of traits that mediate host acceptance and host suitability. We conducted laboratory experiments to identify mechanisms shaping the host specificity of the aphid parasitoid Binodoxys communis. Twenty species of aphids were exposed to B. communis females in microcosms, and detailed observations and rearing studies of 15 of these species were done to determine whether patterns of host use resulted from variation in factors such as host acceptance or variation in host suitability. Six species of aphids exposed to B. communis showed no signs of parasitism. Four of these species were not recognized as hosts and two effectively defended themselves from attack by B. communis. Other aphid species into which parasitoids laid eggs had low suitability as hosts. Parasitoid mortality occurred in the egg or early larval stages for some of these hosts but for others it occurred in late larval stages. Two hypotheses explaining low suitability were investigated in separate experiments: the presence of endosymbiotic bacteria conferring resistance to parasitoids, and aphids feeding on toxic plants. An association between resistance and endosymbiont infection was found in one species (Aphis craccivora), and evidence for the toxic plant hypothesis was found for the milkweed aphids Aphis asclepiadis and Aphis nerii. This research highlights the multifaceted nature of factors determining host specificity in parasitoids.  相似文献   

15.
茶翅蝽Halyomorpha halys(Stl)是水果和蔬菜生产中的重要害虫。为了寻找优势卵寄生蜂用于其生物防治,本文进行了相关的野外调查和室内试验。通过定期野外采集茶翅蝽卵块,培育、收集和鉴定寄生蜂,发现在自然环境中茶翅蝽卵粒的寄生率为56.29%,其中茶翅蝽沟卵蜂比例最高,占77.66%;其次是黄足沟卵蜂占20.44%。Y型嗅觉仪测定结果显示,茶翅蝽沟卵蜂和黄足沟卵蜂对茶翅蝽卵均具有明显的选择趋性。室内寄生能力试验结果表明,茶翅蝽沟卵蜂与黄足沟卵蜂单独作用的寄生率分别为94.06%和84.21%,与两种寄生蜂混合寄生茶翅蝽卵的寄生率91.65%均无显著性差异。两种寄生蜂混合寄生时,茶翅蝽沟卵蜂与黄足沟卵蜂的寄生比例分别为58.95%和41.05%,二者之间无显著差异。  相似文献   

16.
When attacked by herbivores, plants emit volatiles to attract parasitoids and predators of herbivores. However, our understanding of the effect of plant volatiles on the subsequent behaviour of conspecific parasitoids when herbivores on plants are parasitized is limited. In this study, rice plants were infested with gravid females of the brown planthopper (BPH) Nilaparvata lugens for 24 hr followed by another 24 hr in which the BPH eggs on plants were permitted to be parasitized by their egg parasitoid, Anagrus nilaparvatae; volatiles from rice plants that underwent such treatment were less attractive to subsequent conspecific parasitoids compared to the volatiles from plants infested with gravid BPH females alone. Chemical analysis revealed that levels of JA and JA-Ile as well as of four volatile compounds—linalool, MeSA, α-zingiberene and an unknown compound—from plants infested with BPH and parasitized by wasps were significantly higher than levels of these compounds from BPH-infested plants. Laboratory and field bioassays revealed that one of the four increased chemicals—α-zingiberene—reduced the plant's attractiveness to the parasitoid. These results suggest that host plants can fine-tune their volatiles to help egg parasitoids distinguish host habitats with parasitized hosts from those without.  相似文献   

17.
The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.  相似文献   

18.
ABSTRACT.
  • 1 Data mostly from the published literature were used to assess the effect of galling on the number of parasitoid species per host species in the phylogeny of nematine sawflies from free external feeders (colonial and solitary) to leaf gallers and shoot gallers.
  • 2 The strongest effects of galling were the total elimination of the species-rich cocoon-attacking guild of parasitoids, and eonymphal parasitoids, from the parasitoid community on shoot gallers, all of which are in the genus Euura.
  • 3 All tachinid larval parasitoids were also eliminated by the galling habit.
  • 4 The cumulative effects of these exclusions resulted in a decline in mean number of parasitoid species per host species from almost sixteen species on external colonial feeders to 4.0 species on shoot gallers.
  • 5 General patterns in per cent parasitism by non-tachinid and tachinid larval parasitoids, eonymphal and cocoon parasitoids, on exposed feeders to shoot gallers, showed declines in non-tachinid attack and elimination of tachinid, eonymphal and cocoon parasitoids. But leaf gallers tended to be attacked more than exposed feeders by non-tachinid larval parasitoids.
  • 6 The galling habit had a long-term impact by reducing the number of parasitoid species attacking nematine sawfly gallers and per cent mortality inflicted, so that natural enemies may have been important as a selective factor in the evolution of galling nematine sawflies.
  相似文献   

19.
  1. The Western conifer seed bug Leptoglossus occidentalis, a native insect of North America, was accidentally introduced in Europe in the late 1990s. Since then, it has spread rapidly. Biological control could provide an efficient management option but natural enemies of the pest have been poorly examined in Europe.
  2. In this study, we exposed sentinel egg masses and collected naturally laid egg masses in southern France in 2016 and 2017, to identify the egg parasitoids of L. occidentalis and investigate their potentials.
  3. Three egg parasitoids were detected: Anastatus bifasciatus, Ooencyrtus pityocampae and Ooencyrtus telenomicida. The overall parasitism was low compared to that observed in the native range with 6.4% of all eggs being parasitized, while 17.1% of egg masses carried at least one parasitized egg. The total number of parasitized egg masses was similar between parasitoid species, but the mean number of parasitized eggs per egg mass was highest for A. bifasciatus (5.57 vs. 1.25 for Ooencyrtus spp.).
  4. Sentinel egg masses underestimated the parasitism compared to natural egg masses (respectively, 1.42% and 7.71%).
  5. Our results suggested that the three generalist parasitoids detected can respond in a Leptoglossus egg density-dependent manner, but this requires further investigations.
  相似文献   

20.
From December, 1981 to February, 1982, a population study of the spotted tortoise beetle, Aspidomorpha miliaris, feeding on a shrub-like morning glory, Ipomea carnea, was conducted in Padang, Sumatra with the construction of a life table.
  1. Dissection of oothecae collected from the field after hatching clarified that the average egg mass size was 43.4 and hatching rate was 25.0%. Causes for egg mortality included: parasitism by a wasp, Tetrastichus sp. A(Europhidae) (49.8% of eggs laid), predation (12.8%), disappearance of egg masses (5.3%) and hatching failure (7.1%). An ant, Dolichoderus bituberculatus, visiting the extrafloral nectaries of the host plnts was responsible for predation and disappearance of the egg masses. The ants again attacked the larvae and pupae.
  2. Larvae showed a gregarious habit for almost the entire larval period. Survival rates between two successive instars were low and constant, ranging from 70 to 90%, but only 1.3% of final (5th) instars become pupae (six individuals). Since the growth of host plants was extremely rapid, shortage of food was rare in larval stages. The sudden drop in numbers after 5th instar may be due to predation and/or dispersal of matured larvae from the host plants for pupation.
  3. Pupae were attacked by three species of parasitic wasps:Tetrastichus sp. C, Pediobius elasmi (Eulophidae) and Cassidocida aspidomorphae (Tetracampidae). Among the six pupae, two were parasitized, one died of disease and two disappeared. Out of 4078 eggs laid, only one emerged to adult.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号