首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
《Trends in parasitology》2023,39(7):588-602
The mass production of insects is rapidly expanding globally, supporting multiple industrial needs. However, parasite infections in insect mass-production systems can lower productivity and can lead to devastating losses. High rearing densities and artificial environmental conditions in mass-rearing facilities affect the insect hosts as well as their parasites. Environmental conditions such as temperature, gases, light, vibration, and ionizing radiation can affect productivity in insect mass-production facilities by altering insect development and susceptibility to parasites. This review explores the recent literature on environment–host–parasite interactions with a specific focus on mass-reared insect species. Understanding these complex interactions offers opportunities to optimise environmental conditions for the prevention of infectious diseases in mass-reared insects.  相似文献   

2.
Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2–32.2%) and tolerance (H = 18.8%; 95% CI: 4.4–36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations.  相似文献   

3.
Host–parasite interactions are characterised by a lack of stable species-specific traits that limits generalisations one can make even about particular host or parasite species. For instance, the virulence, life history traits or transmission mode of a given parasite species can depend on which of its suitable hosts it infects. In the search for general rules or patterns, meta-analysis provides a possible solution to the challenges posed by the highly variable outcomes of host–parasite interactions. It allows an estimate of the overall association between any factor and its biological response that transcends the particulars of given host and parasite taxonomic combinations. In this review, we begin with a historical overview of the use of meta-analysis in research on the ecology and evolution of host–parasite interactions. We then identify several key conceptual advances that were made possible only through meta-analytical synthesis. For example, meta-analysis revealed the predominant association between rates of host and parasite gene flow and local adaptation, as well as an unexpected latitudinal gradient in parasite virulence, or parasite-induced host mortality. Finally, we propose some areas of research on host–parasite interactions that are based on a mature theoretical foundation and for which there now exist sufficient primary results to make them ripe for meta-analysis. The search for the processes causing variability in parasite species richness among host species, and the link between the expression of host resistance and the specificity of parasites, are two such research areas. The main objective of this review is to promote meta-analysis as a synthetic tool overriding the idiosyncrasies of specific host–parasite combinations and capable of uncovering the universal trends, if any, in the evolutionary ecology of parasitism.  相似文献   

4.
Parasites often manipulate host immunity for their own benefit, either by exacerbating or suppressing the immune response and this may directly affect the expression of parasite virulence. However, genetic variation in immunodepression, which is a prerequisite to its evolution, and the relationship between immunodepression and virulence, have rarely been studied. Here, we investigated the variation among sibships of the acanthocephalan parasite, Pomphorhynchus laevis, in infecting and in immunodepressing its amphipod host, Gammarus pulex. We also assessed the covariation between infectivity, parasite-induced immune depression and host mortality (parasite virulence). We found that infectivity, the intensity of immunodepression and virulence were variable among parasite sibships. Infectivity and the level of immunodepression were not correlated across parasite sibships. Whereas infectivity was unrelated to host mortality, we found that gammarids that were exposed to the parasite sibships that immunodepressed their hosts the most survived better. This positive covariation between host survival and immunodepression suggests that gammarids exposed to the less immunodepressive parasites could suffer from damage imposed by a higher activity of the phenoloxidase.  相似文献   

5.
Leishmaniasis is a public health problem in tropical and subtropical areas of the world, including Venezuela. The incidence of treatment failure and the number of cases with Leishmania-HIV co-infection underscore the importance of developing alternative, economical and effective therapies against this disease. The work presented here analyzed whether terpenoids derived from betulin are active against New World Leishmania parasites. Initially we determined the concentration that inhibits the growth of these parasites by 50% or IC50, and subsequently evaluated the chemotactic effect of four compounds with leishmanicidal activity in the sub-micromolar and micromolar range. That is, we measured the migratory capacity of Leishmania (V.) braziliensis in the presence of increasing concentrations of compounds. Finally, we evaluated their cytotoxicity against the host cell and their effect on the infectivity of L. (V.) braziliensis. The results suggest that (1) compounds 14, 17, 18, 25 and 27 are active at concentrations lower than 10 μM; (2) compound 26 inhibits parasite growth with an IC50 lower than 1 μM; (3) compounds 18, 26 and 27 inhibit parasite migration at pico- to nanomolar concentrations, suggesting that they impair host–parasite interaction. None of the tested compounds was cytotoxic against J774.A1 macrophages thus indicating their potential as starting points to develop compounds that might affect parasite–host cell interaction, as well as being leishmanicidal.  相似文献   

6.
Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host–parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5°C) and permissive (23°C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise.  相似文献   

7.
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.  相似文献   

8.
9.
The introduction of species is of increasing concern as invaders often reduce the abundance of native species due to a variety of interactions like habitat engineering, predation and competition. A more subtle and not recognized effect of invaders on their recipient biota is their potential interference with native parasite–host interactions. Here, we experimentally demonstrate that two invasive molluscan filter-feeders of European coastal waters interfere with the transmission of free-living infective trematode larval stages and hereby mitigate the parasite burden of native mussels (Mytilus edulis). In laboratory mesocosm experiments, the presence of Pacific oysters (Crassostrea gigas) and American slipper limpets (Crepidula fornicata) reduced the parasite load in mussels by 65–77% and 89% in single and mixed species treatments, respectively. Both introduced species acted as decoys for the trematodes thus reducing the risk of hosts to become infected. This dilution effect was density-dependent with higher reductions at higher invader densities. Similar effects in a field experiment with artificial oyster beds suggest the observed dilution effect to be relevant in the field. As parasite infections have detrimental effects on the mussel hosts, the presence of the two invaders may elicit a beneficial effect on mussels. Our experiments indicate that introduced species alter native parasite–hosts systems thus extending the potential impacts of invaders beyond the usually perceived mechanisms.  相似文献   

10.
11.
12.
Outer membrane vesicles (OMVs), ubiquitously shed from Gram-negative bacteria, contain various virulence factors such as toxins, proteases, adhesins, and lipopolysaccharide, which are utilized to establish a colonization niche, modulate host defense and response, and impair host cell function. Thus, OMVs can be considered as a type of bacterial offensive weapon. This review discusses the entry mechanism of OMVs into host cells as well as their etiological roles in host–parasite interactions.  相似文献   

13.
Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ~35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host–parasite molecular co-speciation, suggests that parasites of the genus Schellackia co-evolved with their lizard hosts.  相似文献   

14.

Aim

Understanding how climate conditions influence plant–pollinator interactions at the global scale is crucial to understand how pollinator communities and ecosystem function respond to environmental change. Here, we investigate whether climate drives differences in network roles of the main insect pollinator orders: Diptera, Coleoptera, Lepidoptera and Hymenoptera.

Location

Global.

Time period

1968–2020.

Major taxa studied

Diptera, Coleoptera, Lepidoptera and Hymenoptera.

Methods

We collated plant–pollinator networks from 26 countries and territories across the five main Köppen–Geiger climate zones. In total, we compiled data from 101 networks that included >1500 plant species from 167 families and >2800 pollinator species from 163 families. We assessed differences in the composition of plant–pollinator interactions among climate zones using a permutational ANOVA. We calculated standard network metrics for pollinator taxonomic groups and used Bayesian generalized mixed models to test whether climate zone influenced the proportion of pollinator network links and the level of pollinator generalism.

Results

We found that climate is a strong driver of compositional dissimilarities between plant–pollinator interactions. Relative to other taxa, bees and flies made up the greatest proportion of network links across climate zones. When network size was accounted for, bees were the most generalist pollinator group in the tropics, whereas non-bee Hymenoptera were the most generalist in arid zones, and syrphid flies were the most generalist in polar networks.

Main conclusions

We provide empirical evidence at the global scale that climate strongly influences the roles of different pollinator taxa within networks. Importantly, non-bee taxa, particularly flies, play central network roles across most climate zones, despite often being overlooked in pollination research and conservation. Our results identify the need for greater understanding of how global environmental change affects plant–pollinator interactions.  相似文献   

15.
16.
Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.  相似文献   

17.
The consequences of host–parasite coevolution are highly contingent on the qualitative coevolutionary dynamics: whether selection fluctuates (fluctuating selection dynamic; FSD), or is directional towards increasing infectivity/resistance (arms race dynamic; ARD). Both genetics and ecology can play an important role in determining whether coevolution follows FSD or ARD, but the ecological conditions under which FSD shifts to ARD, and vice versa, are not well understood. The degree of population mixing is thought to increase host exposure to parasites, hence selecting for greater resistance and infectivity ranges, and we hypothesize this promotes ARD. We tested this by coevolving bacteria and viruses in soil microcosms and found that population mixing shifted bacteria–virus coevolution from FSD to ARD. A simple theoretical model produced qualitatively similar results, showing that mechanisms that increase host exposure to parasites tend to push dynamics towards ARD. The shift from FSD to ARD with increased population mixing may help to explain variation in coevolutionary dynamics between different host–parasite systems, and more specifically the observed discrepancies between laboratory and field bacteria–virus coevolutionary studies.  相似文献   

18.
The evolutionary strategies that emerge within populations can be dictated by numerous factors, including interactions with other species. In this paper, we explore the consequences of such a scenario using a host-parasite system of human concern. By analyzing the dynamical behaviors of a mathematical model we investigate the evolutionary outcomes resulting from interactions between Schistosoma mansoni and its snail and human hosts. The model includes two types of snail hosts representing resident and mutant types. Using this approach, we focus on establishing evolutionary stable strategies under conditions where snail hosts express different life-histories and when drug treatment is applied to an age-structured population of human hosts. Results from this work demonstrate that the evolutionary trajectories of host-parasite interactions can be varied, and at times, counter-intuitive, based on parasite virulence, host resistance, and drug treatment.  相似文献   

19.
Microsporidia are a large group of obligate intracellular eukaryotic parasites related to Fungi. Recent studies suggest that their diversity has been greatly underestimated and little is known about their hosts other than metazoans, and thus about their impact on the communities at the base of the food web. In this work, we therefore studied the diversity of Microsporidia over one year and identified potential new hosts in small-sized fractions (<150 μm) in a lake ecosystem using a metabarcoding approach coupled with co-occurrence networks and tyramide signal amplification-fluorescent in situ hybridization. Our analysis shows a great Microsporidia diversity (1 472 OTUs), with an important part of this diversity being unknown. Temporal variations of this diversity have been observed, which might follow temporal variations of their potential hosts such as protists and microzooplankton. New hosts among them were identified as well as associations with phytoplankton. Indeed, repeated infections were observed in Kellicottia (rotifers) with a prevalence of 38% (infected individuals). Microsporidia inside a Stentor (ciliate) were also observed. Finally, potential infections of the diatom Asterionella were identified (prevalence <0.1%). The microsporidian host spectrum could be therefore even more important than previously described, and their role in the functioning of lake ecosystems is undoubtedly largely unknown.  相似文献   

20.
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant–pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18–30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant–pathogen interactions. The main content of this review article includes the roles of sRNAs in plant–pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号