首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Temperature is one of the most important climatic factors that may influence different traits (morphological, physiological or behavioral) in Drosophila. In this study, we examined the effects of two developmental temperatures (18°C and 25°C) on the size and the symmetry of sex combs (a male sexual trait) and their importance for male mating success in Drosophila melanogaster. However, the number of sex comb teeth (“size”) and its difference between right and left legs (“symmetry”) were relevant neither to male mating success nor to the growth temperatures.  相似文献   

2.
Selection for late-life fecundity and longevity in adult Drosophila melanogaster is well known to modify numerous characteristics of life history and physiology. We report experiments here in which selection applied to behavior affects features in an identical fashion. Selection for feeding rate of larval D. melanogaster modifies caloric intake, as measured by the uptake and incorporation of labeled glucose. Selection for slow larval feeding produced lines of D. melanogaster in which larvae synthesized significantly less lipid prior to pupation and eclosed to have low early-life fecundity and a long life as adults. They also had greater lifetime fecundity, but lower viability of egg to hatched adult. Alternatively, fast-feeding larvae incorporated more lipid before pupation and eclosed with high early-fecundity that declined rapidly throughout their short adult life. Slow-feeding populations also had a significantly enhanced expression of the stress-resistance genes CuZn-SOD, CATALASE, and HSP70. Selection on larval feeding behavior reproduced the antagonistic evolutionary trade-off found under selection for adult life span and mimicked the physiological response in life span as seen in many species when dietary restriction is imposed on adults. Thus, nutrient acquisition during development appears to share a common evolutionary and genetic basis with the allocation processes that determine adult life-history traits and the related phenotypic dietary restriction phenomena.  相似文献   

3.
To respond to changing environmental conditions, a population may either shift toward better‐adapted genotypes or adapt on an individual level. The present work aimed to quantify the relevance of these two processes by comparing the responses of defined Drosophila melanogaster populations to different stressors. To do this, we infected two homogeneous populations (isofemale lines), which differ significantly in fitness, and a synthetic heterogeneous population with a specific pathogen and/or exposed them to food restriction. Pectobacterium carotovorum was used to infect Drosophila larvae either fed standard or protein‐restricted diet. In particular, the two homogeneous groups, which diverged in their fitness, showed considerable differences in all parameters assessed (survivorship, protein and lipid contents, phenol‐oxidase (PO) activity, and antibacterial rate). Under fully nutritious conditions, larvae of the homogeneous population with low fitness exhibited lower survivorship and protein levels, as well as higher PO activity and antibacterial rate compared with the fitter population. A protein‐restricted diet and bacterial infection provoked a decrease in survivorship, and antibacterial rate in most populations. Bacterial infection elicited an opposite response in protein and lipid content in both isofemale lines tested. Interestingly, the heterogeneous population showed a complex response pattern. The response of the heterogeneous population followed the fit genotype in terms of survival and antibacterial activity but followed the unfit genotype in terms of PO activity. In conclusion, our results show that defined genotypes exhibit highly divergent responses to varying stressors that are difficult to predict. Furthermore, the responses of heterogeneous populations do not follow a fixed pattern showing a very high degree of plasticity and differences between different genotypes.  相似文献   

4.
Drosophila melanogaster is often used as a model organism in evolutionary biology and ecophysiology to study evolutionary processes and their physiological mechanisms. Diets used to feed Drosophila cultures differ between laboratories and are often nutritious and distinct from food sources in the natural habitat. Here we rear D. melanogaster on a standard diet used in our laboratory and a field diet composed of decomposing apples collected in the field. Flies developed on these two diet compositions are tested for heat, cold, desiccation, and starvation resistance as well as developmental time, dry body mass and fat percentage. The nutritional compositions of the standard and field diets were analyzed, and discussed in relation to the phenotypic observations. Results showed marked differences in phenotype of flies from the two types of diets. Flies reared on the field diet are more starvation resistant and they are smaller, leaner, and have lower heat resistance compared to flies reared on the standard diet. Sex specific effects of diet type are observed for several of the investigated traits and the strong sexual dimorphism usually observed in desiccation resistance in D. melanogaster disappeared when rearing the flies on the field diet. Based on our results we conclude that care should be taken in extrapolating results from one type of diet to another and especially from laboratory to field diets.  相似文献   

5.
Geotaxis and phototaxis are movements in response to gravity and light, respectively, and are commonly observed in nature. The interactions between these two types of movement have been shown to confer ecological advantages to many taxa. Although several studies have been conducted on phototaxis and geotaxis in various organisms, reports on the interactions between positive phototaxis and negative geotaxis are lacking. In the fruit fly, Drosophila melanogaster, any direct interactions that exist between positive phototaxis and negative geotaxis are yet to be determined and the ecological significance of such interactions remains unclear. In the present study, the effects of gravity on positive phototaxis in a Y‐maze were investigated using the Canton‐S wild type and gravity‐sensing‐deficient pyx3 mutant fruit flies. Gravity sensing was not necessary for horizontal positive phototaxis, but was required for vertical positive phototaxis. These results suggest that gravitoreception may selectively modulate positive phototaxis depending on the vertical and horizontal movements of the fruit flies.  相似文献   

6.
Temperature is a determining factor for the development and establishment potential of insect pests. The present study describes the impact of temperature (13, 18, 23, 25, 28, 30, and 33 °C) on the life cycle parameters and phenotypic plasticity of South American populations of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the laboratory. Secondary objectives were to determine the lower thermal threshold and thermal constant to estimate the number of annual generations of the insect in small-fruit-producing regions in Brazil. The highest egg-to-adult survival was recorded at 23 and 25 °C. At 30 and 33 °C, no emergence of D. suzukii was observed. The egg-to-adult development time was shortest at 25 and 28 °C (ca. 10 days). The net reproductive rate (R0), and the intrinsic rate of population increase (rm) were highest at 23 and 25 °C. In contrast, temperatures of 13 and 28 °C generated largest and smallest body sizes, respectively, and caused reductions of 99 and 93% in R0. The estimated lower thermal threshold was 7.8 °C for egg-to-adult survival. The estimated thermal constant was 185.8 degree days, and the estimated annual number of generations of D. suzukii ranged from 17.1 in cold regions to 27.2 in warm regions. The results of the present study are important for understanding D. suzukii occurrence in the field, contributing to more informed and precise pest management.  相似文献   

7.
Environments experienced during development have long‐lasting consequences for adult performance and fitness. The “environmental matching” hypothesis predicts that individuals perform best when adult and developmental environments match whereas the “silver spoon” hypothesis expects that fitness is higher in individuals developed under favorable environments regardless of adult environments. Temperature and nutrition are the two most influential determinants of environmental quality, but it remains to be elucidated which of these hypotheses better explains the long‐term effects of thermal and nutritional histories on adult fitness traits. Here we compared how the temperature and nutrition of larval environment would affect adult survivorship and reproductive success in the fruit fly, Drosophila melanogaster. The aspect of nutrition focused on in this study was the dietary protein‐to‐carbohydrate (P:C) ratio. The impact of low developmental and adult temperature was to improve adult survivorship. High P:C diet had a negative effect on adult survivorship when ingested during the adult stage, but had a positive effect when ingested during development. No matter whether adult and developmental environments matched or not, females raised in warm and protein‐enriched environments produced more eggs than those raised in cool and protein‐limiting environments, suggesting the presence of a significant silver spoon effect of larval temperature and nutrition. The effect of larval temperature on adult egg production was weak but persisted across the early adult stage whereas that of larval nutrition was initially strong but diminished rapidly after day 5 posteclosion. Egg production after day 5 was strongly influenced by the P:C ratio of the adult diet, indicating that the diet contributing mainly to reproduction had shifted from larval to adult diet. Our results highlight the importance of thermal and nutritional histories in shaping organismal performance and fitness and also demonstrate how the silver spoon effects of these aspects of environmental histories differ fundamentally in their nature, strength, and persistence.  相似文献   

8.
We investigate how the black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae) responds to dietary protein (P) and carbohydrate (C) contents and the P:C ratio in terms of both immature and adult life‐history traits, as well as effects on larval body composition. Nine chicken‐feed based diets varying in their P:C ratio are formulated. We test three protein concentrations (10%, 17% and 24%) and three carbohydrate concentrations (35%, 45% and 55%) and their combinations. All nine diets support the complete development and reproduction of this species. Survival is high on all diets. Development time, larval yield, larval crude fat and egg yield are more influenced by P and C contents than by the P:C ratio. Low contents result in a shorter development time. Larval yield is higher on diets with higher C‐contents. Pupal development is faster on a low dietary P‐content for all three C‐contents. Egg yield only increases when P‐content increases, although it also varies with the P:C ratio. Larval crude protein content is similar on all nine diets but increases when C‐content is low (10%) in P10 and P17. Larval crude fat content is high at P24‐diets irrespective of C‐content. We conclude that a high macronutrient content combined with a low P:C ratio positively affects H. illucens performance. The diet P17:C55 supports the highest larval and adult performance and results in a high larval body protein content and an intermediate crude fat content.  相似文献   

9.
Modest dietary restriction extends lifespan (LS) in a diverse range of taxa and typically has a larger effect in females than males. Traditionally, this has been attributed to a stronger trade‐off between LS and reproduction in females than in males that is mediated by the intake of calories. Recent studies, however, suggest that it is the intake of specific nutrients that extends LS and mediates this trade‐off. Here, we used the geometric framework (GF) to examine the sex‐specific effects of protein (P) and carbohydrate (C) intake on LS and reproduction in Drosophila melanogaster. We found that LS was maximized at a high intake of C and a low intake of P in both sexes, whereas nutrient intake had divergent effects on reproduction. Male offspring production rate and LS were maximized at the same intake of nutrients, whereas female egg production rate was maximized at a high intake of diets with a P:C ratio of 1:2. This resulted in larger differences in nutrient‐dependent optima for LS and reproduction in females than in males, as well as an optimal intake of nutrients for lifetime reproduction that differed between the sexes. Under dietary choice, the sexes followed similar feeding trajectories regulated around a P:C ratio of 1:4. Consequently, neither sex reached their nutritional optimum for lifetime reproduction, suggesting intralocus sexual conflict over nutrient optimization. Our study shows clear sex differences in the nutritional requirements of reproduction in D. melanogaster and joins the growing list of studies challenging the role of caloric restriction in extending LS.  相似文献   

10.
Insects can adapt to temperate environments by increasing levels of resistance to cold conditions over winter and/or altering reproductive patterns to focus reproduction in favourable conditions. In temperate areas, Drosophila melanogaster persists over winter at the adult stage. A previous experiment, conducted with flies kept in outdoor population cages in the temperate winter, indicated that temperate populations produced more eggs than did tropical populations following an abrupt increase in reproduction in late winter. In contrast, the tropical populations produced more eggs prior to the increase. Both patterns resulted in a higher net number of surviving offspring for temperate populations. Here we again examine the clinal pattern in reproduction using outdoor cages, this time held under tropical winter conditions. In this environment, surprisingly, egg production was higher and on average earlier in populations originating from temperate areas. However, mortality rates also increased with latitude of origin, and the relationship of lifetime egg production to latitude should therefore be measured. To test the role of altered pattern of egg production per se in the reproductive advantage of temperate populations in the temperate winter, we tested the performance of laboratory lines selected for altered reproductive patterns, under temperate winter conditions. Lines selected for high early fecundity exhibited this characteristic in the field cages and lines selected for late reproduction exhibited a relatively high fecundity in spring. The timing of the abrupt increase in egg production was identical in these sets of lines and occurred at the same time in recently collected populations, suggesting evolutionary conservation of the switch. These findings suggest that changes in early and late reproduction per se determine adaptation to temperate winter conditions, and illustrate how laboratory selection lines can be used to understand traits underlying adaptive shifts in field performance.  相似文献   

11.
Abstract. Stable flies (Stomoxys calcitrans L.) deprived of a bloodmeal until 3 days post-emergence had higher mortality rates than control flies fed from the day of emergence. Fat bodies of deprived females required one more bloodmeal to reach maximum size, and maximum size was smaller, than fat bodies of control females. Ovarian development did not commence prior to feeding in deprived flies, and proceeded more slowly thereafter, resulting in a one bloodmeal delay in egg maturation in deprived flies. Deprived females produced fewer (54.7, SD 2.8) eggs than controls (75.9, SD 3.7) and eggs from deprived females were smaller (mean length 684.0 μrn) than control females' eggs (mean length 1165.7 μm).  相似文献   

12.
Life history parameters were determined for glucose-averse (glu/glu), wild-type (glu+/glu+) and heterozygous (glu/glu+) genotypes of Blattella germanica (L.) (Blattodea: Blattellidae) fed diets supplemented with glucose. Glu/glu nymphs consumed less glucose-supplemented diet, gained less weight, developed slower and had a lower rate of survival than glu/glu nymphs fed the same diet without added glucose, or glu+/glu+ and glu/glu+ fed either diet. Prior to formation of the first oötheca, female glu/glu consumed less glucose-supplemented diet per day than glu+/glu+ and glu/glu+, which presumably delayed egg case production. Oötheca-bearing glu/glu and glu/glu+ females consumed less glucose-supplemented diet than glu+/glu+ females. Despite a difference in female total diet intake, there was no effect of diet or genotype on fecundity. However, the intrinsic rate of increase (r) for glulglu on unsupplemented diet was less than that of glu+/glu+ and glu/glu+, suggesting that individuals with both glu alleles may be at a selective disadvantage in environments lacking diets containing glucose plus a toxicant.  相似文献   

13.
Parent-offspring comparisons were used to investigate the effects of temperature extremes on genetic variances for two life history traits and one morphological trait in Drosophila melanogaster. We considered three temperatures (14 °C, 25 °C and 28 °C) for culturing and testing flies, and considered heritabilities, coefficients of additive variation (CVA) and evolvabilities (IA) for fecundity, development time and wing length. For fecundity, heritabilities and evolvabilities were higher when parents were exposed to 14 °C compared to 28 °C. Parent-offspring comparisons suggested that genetic correlations among environments were close to 1, although lower correlations were obtained in comparisons of family means. Parent-offspring correlations across environments seemed to depend on parental temperature. For development time, heritabilities and evolvabilities were low at 14 °C compared to 28 °C. However, parent-offspring correlations were relatively high when the progeny of parents tested at 14 °C were raised at the opposite extreme, suggesting that genetic variation can be enhanced when parents and offspring experience different conditions. CVAs and IAs for development time were lower than for fecundity, even when heritability estimates were similar in magnitude. Genetic variation for wing length was generally not affected by the temperature extremes, and genetic correlations across the extremes estimated from the parent-offspring comparison were close to 1. There was no evidence for tradeoffs between traits; rapid development time was associated with high fecundity at both the phenotypic and genetic levels. The findings highlight inherent difficulties of estimating genetic parameters from parent-offspring comparisons when two generations experience different environmental extremes and also show how parent-offspring comparisons can lead to unexpected findings about the expression of genetic variation.  相似文献   

14.
Macronutrient balance is an important determinant of fitness in many animals, including insects. Previous studies have shown that altering the concentrations of yeast and sugar in the semi-synthetic media has a profound impact on lifespan in Drosophila melanogaster, suggesting that dietary protein:carbohydrate (P:C) balance is the main driver of lifespan and ageing processes. However, since yeast is rich in multiple nutrients other than proteins, this lifespan-determining role of dietary P:C balance needs to be further substantiated through trials using a chemically-defined, synthetic diet. In the present study, the effects of dietary P:C balance on lifespan and fecundity were investigated in female D. melanogaster flies fed on one of eight isocaloric synthetic diets differing in P:C ratio (0:1, 1:16, 1:8, 1:4, 1:2, 1:1, 2:1 or 4:1). Lifespan and dietary P:C ratio were related in a convex manner, with lifespan increasing to a peak at the two intermediate P:C ratios (1:2 and 1:4) and falling at the imbalanced ratios (0:1 and 4:1). Ingesting nutritionally imbalanced diets not only caused an earlier onset of senescence but also accelerated the age-dependent increase in mortality. Egg production was suppressed when flies were fed on a protein-deficient food (0:1), but increased with increasing dietary P:C ratio. Long-lived flies at the intermediate P:C ratios (1:2 and 1:4) stored a greater amount of lipids than those short-lived ones at the two imbalanced ratios (0:1 and 4:1). These findings provide a strong support to the notion that adequate dietary P:C balance is crucial for extending lifespan in D. melanogaster and offer new insights into how dietary P:C balance affects lifespan and ageing through its impacts on body composition.  相似文献   

15.
16.
Sexual dimorphism (SD) is widespread, reflecting a resolution of genetic conflicts arising from sex-specific differences in selection. However, genetic correlations among traits may constrain the evolution of SD. Drosophila melanogaster exhibits SD for pupal period (males longer) and adult weight (females heavier). This negative inter-sex covariance between the traits contrasts with a significant intra-sex positive genetic correlation (r(g) = 0.95) estimated using lines selected for fast larval development. Path analysis indicated that within sexes the selection regime indirectly reduced adult weight which in turn reduced pupal period. A hypothesis is proposed for the evolution of SD whereby the trait 'pupal period' is divided into 'intrinsic' (correlated with body size) and 'ecological' (uncorrelated with body size) components, and (the larger) females eclose earlier than males size via a shortening of the ecological component, thus achieving the advantage of provisioning eggs prior to sexual maturity. This hypothesis avoids invoking successful 'incompatible antagonistic selection'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号