首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
  • Epiphytic and rupicolous plants inhabit environments with limited water resources. Such plants commonly use Crassulacean Acid Metabolism (CAM), a photosynthetic pathway that accumulates organic acids in cell vacuoles at night, so reducing their leaf water potential and favouring water absorption. Foliar water uptake (FWU) aids plant survival during drought events in environments with high water deficits. We hypothesized that FWU represents a strategy employed by epiphytic and rupicolous orchids for water acquisition and that CAM will favour increased water absorption.
  • We examined 6 epiphyte, 4 terrestrial and 6 rupicolous orchids that use C3 (n = 9) or CAM (n = 7) pathways. Five individuals per species were used to evaluate FWU, structural characteristics and leaf water balance.
  • Rupicolous species with C3 metabolism had higher FWU than other species. FWU (Cmax and k) could be related to succulence, SLM and leaf RWC. The results indicated that high orchid leaf densities favoured FWU, as area available for water storage increases with leaf density. Structural characteristics linked to water storage (e.g. high RWC, succulence), on the other hand, could limit leaf water absorption by favouring high internal leaf water potentials.
  • Epiphytic, rupicolous and terrestrial orchids showed FWU. Rupicolous species had high levels of FWU, probably through absorption from mist. However, succulence in plants with CAM appears to mitigate FWU.
  相似文献   

3.
  1. Browning of waters, coupled to climate change and land use changes, can strongly affect aquatic ecosystems. Browning-induced light limitation may have negative effects on aquatic consumers via shifts in resource composition and availability and by negatively affecting foraging of consumers relying on vision. However, the extent to which light limitation caused by browning affects fish via either of these two pathways is largely unknown.
  2. Here we specifically test if fish growth responses to browning in a pelagic food web are best explained by changes in resource availability and composition due to light limitation, or by reduced foraging rates due to decreased visual conditions.
  3. To address this question, we set up a mesocosm experiment to study growth responses of two different fish species to browning and conducted an aquaria experiment to study species-specific fish foraging responses to browning. Furthermore, we used a space-for-time approach to analyse fish body length-at-age across >40 lakes with a large gradient in lake water colour to validate experimental findings on species-specific fish growth responses.
  4. With browning, we found an increase in chlorophyll a concentrations, shifts in zooplankton community composition, and a decrease in perch (Perca fluviatilis) but not roach (Rutilus rutilus) body growth. We conclude that fish growth responses are most likely to be linked to the observed shift in prey (zooplankton) composition. In contrast, we found limited evidence for reduced perch, but not roach, foraging rates in response to browning. This suggests that light limitation led to lower body growth of perch in brown waters mainly through shifts in resource composition and availability, perhaps in combination with decreased visibility. Finally, with the lake study we confirmed that perch but not roach body growth and length-at-age are negatively affected by brown waters in the wild.
  5. In conclusion, using a combination of experimental and observational data, we show that browning of lakes is likely to (continue to) result in reductions in fish body growth of perch, but not roach, as a consequence of shifts in prey availability and composition, and perhaps reduced foraging.
  相似文献   

4.
Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m−3 day−1 in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (μ overall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (k d), observed yield (Y obs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Y obs) is associated with an increased solid retention time, while k d and Y changed insignificantly and can be regarded as constants under different organic loading rates.  相似文献   

5.
1. We used first‐order kinetic parameters of biological oxygen demand (BOD), the constant of aerobic decomposition (k) and the asymptotic value of BOD (BODult), to characterise the lability of organic carbon pools in six lakes of different trophic state: L. Naroch, L. Miastro and L. Batorino (Belarus), L. Kinneret (Israel), L. Ladoga (Russia) and L. Mendota (U.S.A.). The relative contributions of labile and refractory organic carbon fractions to the pool of total organic carbon (TOC) in these lakes were quantified. We also determined the amounts of labile organic carbon within the dissolved and particulate TOC pools in the three Belarus lakes. 2. Mean annual chlorophyll concentrations (used as a proxy for lake trophic state) ranged from 2.3 to 50.6 μg L−1, labile organic carbon (OCL = 0.3BODult) from 0.75 to 2.95 mg C L−1 and k from 0.044 to 0.14 day−1. 3. Our data showed that there were greater concentrations of OCL but lower k values in more productive lakes. 4. In all cases, the DOC fraction dominated the TOC pool. OCL was a minor component of the TOC pool averaging about 20%, irrespective of lake trophic state. 5. In all the lakes, most (c. 85%) of the DOC pool was refractory, corresponding with published data based on measurements of bacterial production and DOC depletion. In contrast, a larger fraction (27–55%) of the particulate organic carbon (POC) pool was labile. The relative amount of POC in the TOC pool tended to increase with increasing lake productivity. 6. Long‐term BOD incubations can be valuable in quantifying the rates of breakdown of the combined particulate and dissolved organic carbon pools and in characterising the relative proportions of the labile and recalcitrant fractions of these pools. If verified from a larger number of lakes our results could have important general implications.  相似文献   

6.
  • 1 The chemical characteristics of floodwaters in ephemeral rivers are little known, particularly with regard to their organic loads. These rivers typically exhibit a pronounced downstream hydrological decay but few studies have documented its effect on chemical characteristics and material transport. To develop a better understanding of the dynamics of floods and associated material transport in large ephemeral rivers, floods of the ephemeral Kuiseb River in south‐western Africa were tracked and repeatedly sampled at multiple points along the river's lower 220 km.
  • 2 We quantified the composition and transport of solute and sediment loads in relation to longitudinal hydrological patterns associated with downstream hydrological decay. Source and sink areas for transported materials were identified, and the composition and transport dynamics of the organic matter load were compared to those described from more mesic systems.
  • 3 Concentrations of sediments and solutes transported by floods in the Kuiseb River tended to increase downstream in association with pronounced hydrological decay. The contribution of particulate organic matter to total organic load is among the highest recorded, despite our observation of unusually high levels of dissolved organic matter. Hydrological decay resulted in deposition of all transported material within the lower Kuiseb River, with no discharge of water or materials to the Atlantic Ocean.
  • 4 Our results suggest that longitudinal variation in surface flow and associated patterns of material transport renders the lower Kuiseb River a sink for materials transported from upstream. The downstream transport and deposition of large amounts of labile organic matter provides an important carbon supplement to heterotrophic communities within the river's lower reaches.
  相似文献   

7.
  1. The hyporheic zone is an important habitat for benthic invertebrates and early-developmental stages of gravel spawning fish. However, the eutrophication of running waters and, in turn, the excessive periphyton biomass leads to its biological clogging. The result of these processes is oxygen depletion and a reduction in the habitat quality of the hyporheic zone.
  2. This study assessed whether top-down effects of two important European river fish species, the large herbivorous cypriniform common nase (Chondrostoma nasus, L.) and the large omnivorous cypriniform European chub (Squalius cephalus, L.), can reduce eutrophication effects in the hyporheic zone. A 4-week mesocosm-based field experiment in a eutrophic river was conducted using cage enclosures stocked or not with either nase or chub.
  3. The top-down control of periphyton was expected to reduce biological clogging and thereby increase oxygen availability in the hyporheic zone. Accordingly, we hypothesised that in enclosures stocked with either fish the concentrations of dissolved oxygen in the hyporheic zone would be higher and the periphyton biomass would be lower than in enclosures without fish stocking.
  4. Hyporheic oxygen concentrations were significantly higher in enclosures stocked with either nase or chub than in enclosures without fish stocking. However, periphyton ash-free dry mass was significantly reduced only in enclosures stocked with nase, not in those stocked with chub. Thus, the positive effects of nase and chub on hyporheic oxygen availability were caused by different mechanisms.
  5. Our results demonstrate that nase and chub can reduce eutrophication effects in the hyporheic zone of running waters. Hence, protecting and enhancing stocks of herbivorous and omnivorous fish will contribute to restoring the hyporheic zone in efforts to preserve biodiversity in eutrophic rivers.
  相似文献   

8.
  • Populus euphratica Oliv. is a widespread phreatophytic tree species that forms riparian forests in (hyper‐)arid regions of Central Asia. Its recruitment strongly relies on vegetative propagation from ‘root suckers’ that emerge from underground root spacers. The water transport through the spacers, although decisive for emerging ramets, has only rarely been quantified, but is crucial for the vegetative regeneration of the forests.
  • In root spacers with different diameters collected from a mature poplar forest in northwest China, we calculated the hydraulic conductivity (kc) from anatomical investigations on the basis of a modified Hagen‐Poiseuille equation and measured it (km) with a perfusion solution in the laboratory. The km values were compared with the water use by young and mature P. euphratica trees determined in previous studies.
  • We obtained a significant correlation between km and kc (which, however, was higher by at least one order of magnitude). Due to the extensive occurrence of tyloses, particularly in older conduits and thicker spacers, and because the conduit area did not increase with spacer diameter, neither kc nor km increased with an increase in spacer diameter. The water supply through the spacers would be sufficient to meet the water demand even of mature trees.
  • Our results provide a mechanistic explanation for the observed occurrence of P. euphratica clones across large areas and, provided that they are also valid for stands with larger distances to the water table, for the sustained growth and vegetative reproduction of P. euphratica stands growing at larger distances from the groundwater.
  相似文献   

9.
  1. Endorheic soda pans are among the highest dissolved organic carbon (DOC) content aquatic systems on the planet with concentrations up to 1 g/L. Considering the importance of inland waters in the global carbon cycle, understanding the drivers of such outstanding organic carbon pools is eminent. The soda pans of the Carpathian Basin present a wide variability of biotic and abiotic characteristics that provide an adequate system to assess the determinants of extreme high DOC concentrations. Here, we demonstrate through a multi-site comparison, a multi-year seasonal monitoring, and a laboratory experiment that the dissolved organic matter content of the highest DOC concentration soda pans is primarily of groundwater and emergent macrophyte origin.
  2. More precisely, the multi-site comparison of 14 soda pans revealed that variation of coloured dissolved organic matter (CDOM) content of the surface water of soda pans is partially explained by the CDOM content (22% of variation) of local groundwater, indicating the significant role of allochthonous terrestrial DOC sources. Further 23% of CDOM variation could be accounted for by Bolboschoenus maritimus species-specific emergent macrophyte cover, while the contribution of Phragmites australis cover was only minor.
  3. In line with the results of the multi-site comparison, our decomposition experiment demonstrated that both B. maritimus and P. australis have the potential to release substantial amount of organic matter into soda pans. However, the organic matter release of B. maritimus leads to twice as high DOC and 3.5-times higher CDOM concentrations than P. australis. Considering previous organic matter release studies, we concluded that P. australis is a relatively low organic matter releaser emergent macrophyte, and therefore the species composition of emergent macrophytes has to be carefully considered in autochthonous plant-derived DOM estimations.
  4. Finally, the multi-year seasonal monitoring of two distinctive soda pans showed that the high organic matter concentrations depend not only on their intrinsic characteristics but also on interannual variability. More precisely, we demonstrated that the highest CDOM and DOC concentrations that occurred in a coloured (i.e. brown, low total suspended solids) soda pan with extensive (95%) macrophyte cover dominated by B. maritimus were measured in a period characterised by high pH and low water levels, which were presumably the consequence of increased evaporation due to decreased precipitation and above average temperature.
  5. Our results indicate that considering climate change trends common for most endorheic regions (i.e. increased temperature and modified precipitation regimes), extremely high organic matter concentrations might become more frequent in the near future in local water bodies, particularly in those highly influenced by groundwater inflow. Furthermore, soda pans with vast specific macrophyte cover and substantial groundwater inflow might become organic carbon processing hotspots.
  相似文献   

10.
11.
  1. Most of the world's large rivers are dammed for the purposes of water storage, flood control, and power production. Damming rivers fundamentally alters water temperature and flows in tailwater ecosystems, which in turn affects the presence and abundance of downstream biota.
  2. We collaborated with more than 200 citizen scientists to collect 2,194 light trap samples across 2 years and more than 2,000 river km. Samples contained 16,222 net‐spinning caddisfly (Hydropsyche) individuals across six species. We used these data to model the distribution of Hydropsyche throughout the Colorado River Basin in the western U.S.A. to identify the roles of water temperature, flows, and species‐specific morphology in determining aquatic species distributions throughout a large arid watershed that has been heavily altered by damming.
  3. We predicted that water temperatures would determine Hydropsyche presence and abundance to a greater extent than diel variation in river stage associated with hydropower production. Among many species, adult female Hydropsychids are morphologically adapted to swim to deep‐water oviposition sites. We predicted that the presence of this ability would negate the otherwise deleterious effects of high stage change on caddisfly egg mortality.
  4. We found that distributions of the two most widespread species, Hydropsyche occidentalis and Hydropsyche oslari (92% of total Hydropsyche captured), were both predicted by water temperatures. However, we also found that the abundance of H. oslari decreased by as much as 10‐fold as diel stage change increased, despite the presence of female morphological adaptations for deep‐water oviposition. We found sexual dimorphism and evidence for deep‐water swimming adaptations in 5/6 species.
  5. Our results show that net‐spinning caddisflies have species‐specific responses to environmental variation and suggest that environmental flows designed to reduce diel stage change and destabilise water temperatures may improve habitat quality for these ubiquitous and important aquatic insects.
  相似文献   

12.
  1. According to the River Continuum Concept, headwater streams are richer in allochthonous (e.g. terrestrial leaves) than autochthonous (e.g. algae) sources of organic matter for consumers. However, compared to algae, leaf litter is of lower food quality, particularly ω-3 polyunsaturated fatty acids (n-3 PUFA), and would constrain the somatic growth, maintenance, and reproduction of stream invertebrates. It may be thus assumed that shredders, such as Gammarus, receive lower quality diets than grazers, e.g. Ecdyonurus, that typically feed on algae.
  2. The objective of this study was to assess the provision of dietary PUFA from leaf litter and algae to the shredder Gammarus and the grazer Ecdyonurus. Three different diets (algae, terrestrial leaves, and an algae–leaf litter mix) were supplied to these macroinvertebrates in a flume experiment for 2 weeks. To differentiate how diet sources were retained in these consumers, algae were isotopically labelled with 13C.
  3. Both consumers became enriched with 13C in all treatments, demonstrating that both assimilated algae. For Gammarus, n-3 PUFA increased, whereas n-6 PUFA stayed constant. By contrast, the n-3 PUFA content of Ecdyonurus decreased as a consequence of declining algal supply.
  4. Results from compound-specific stable isotope analysis provided evidence that the long-chain n-3 PUFA eicosapentaenoic acid (EPA) in both consumers was more enriched in 13C than the short-chain n-3 PUFA α-linolenic acid, suggesting that EPA was taken up directly from algae and not from heterotrophic biofilms on leaf litter. Both consumers depended on algae as their carbon and EPA source and retained their EPA from high-quality algae.
  相似文献   

13.
We studied organic components in the X106 sediment core (length 130.3 cm, water depth 236 m, 50°53′01″N, 100°21′22″E) from Lake Hovsgol to elucidate the biological production, source of organic components, and paleoenvironmental and paleolimnological changes during the last 27 kyr in northwest Mongolia. Total organic carbon (TOC) contents (0.20–0.70%) in the core of the last glacial period increased dramatically and attained 3.16–5.85% in the postglacial period (Holocene), together with the increase of the contribution of terrestrial organic matter. Biological production (both terrestrial and aquatic production) based on the TOC contents in the Holocene was 14 times higher than that in the last glacial period. The B?lling-Aller?d warm period and Younger Dryas cool period were both observed at depths of 55–50 cm (ca. 15–13 cal kyr BP) and 50–45 cm (ca. 13–11 cal kyr BP), respectively. We propose here a terrestrial/aquatic index (TAI) for organic matter in lake sediments. The TAI values suggest that terrestrial organic matter in the bottom of the core was less than 10%, increased to 48% in the B?lling-Aller?d warm period, decreased abruptly to 20% in the Younger Dryas cool period, and again increased to 30–40% in the Holocene. Normal-C31 alkane (a biomarker of herbaceous land plants) and n-C18 alkanoic acid (marker of plankton) decreased from the last glacial period to the Holocene, whereas n-C23 alkane and n-C22 alkanoic acid (a marker of higher vascular plants) increased from the last glacial period to the Holocene. Scarce herbaceous plant vegetation, such as Artemisia spp. of the lake basin in the last glacial period, changed into an abundance of higher woody plant vegetation (e.g., Pinus spp., Betula spp. and/or Larix spp.) in the Holocene. Stanol/sterol ratios suggest that relatively high oxygen tension of the lake bottom in ca. 27–22 cal kyr BP decreased from this age to the present, though benthic organisms are still abundant.  相似文献   

14.
  1. Environmental factors such as nutrient and light availability may play important roles in determining the magnitude and direction of microbial priming and detrital decomposition and, therefore, the relative importance of microbial priming in carbon (C) dynamics in freshwater ecosystems.
  2. We integrated light availability with an existing conceptual model predicting the magnitude of the priming effect (PE) along a dissolved nutrient gradient (i.e. nutrient PE model). Our modified light-nutrient PE model hypothesises how light may mediate priming at any given nutrient concentration and provides a calculation method for quantitative PE values (i.e. light effect size at a given nutrient concentration).
  3. We used recirculating stream mesocosms with Quercus stellata (post oak) leaf litter as an organic matter (OM) substrate in a 150-day experiment to test our model predictions. We manipulated light levels [ambient (full light), shaded (c. 19% of ambient)] and phosphorus (P) concentration (10, 100, 500 µg PO4-P/L) in a fully factorial design. We also supplied all mesocosms with 500 µg/L dissolved inorganic nitrogen. Microbial biomass, water column dissolved organic C, and leaf litter dry mass and recalcitrant OM [i.e. the fibre (cellulose + lignin) component of post oak substrate] were measured. Recalcitrant OM (ROM) k-rates (day−1) were used to calculate the light effect size within P treatments as a log response ratio (ln[ambient k-rate/shade k-rate]) to ascertain PE magnitude and direction (positive or negative).
  4. Light was an important driver of dissolved organic C, a potential source of additional labile organic matter essential for priming heterotrophic microbes. There were weak PEs in total leaf litter dry mass remaining, but PEs were more pronounced in leaf litter ROM remaining. The strongest positive PEs (specific to litter ROM pools) occur in the highest P treatment, presumably due to a change in which nutrient, nitrogen versus P, was a limiting factor for microbes based on nutrient ratios rather than P concentration alone. These results illustrate the importance of considering light levels, nutrient ratios (rather than individual nutrients), and detrital ROM components in further PE model development.
  相似文献   

15.
Export of DOM from Boreal Catchments: Impacts of Land Use Cover and Climate   总被引:2,自引:1,他引:1  
Dissolved organic matter (DOM) is an important fraction in carbon (C) and nutrient budgets for aquatic ecosystems and can have broad effects on food webs and nutrient cycling. To look at the role land use cover and climate might play in DOM transport from the boreal region, the export of total organic carbon (TOC), total organic nitrogen (TON) and dissolved organic phosphorus (DOP) was estimated for Finnish main rivers and their sub-catchments, altogether 86 catchments, situated between latitudes 60° N and 69° N and covering 297,322 km2, 88% of the total area of Finland. On an average, 94% of the TOC, 90% of the total nitrogen (TN) and 40% of the total phosphorus (TP) in Finnish rivers was in a dissolved form. The majority of the DOM export from Finnish catchments consists of organic C. The TOC export increased with increasing peatland proportion (r = 0.39, p = 0.003), while TON export increased with the increasing percentage of agricultural land (r = 0.60, p <0.001). Although upstream lakes covered only on average 9% of the catchment area, they were the most important predictor for TOC, TON and DOP export (r = −0.83, r = −0.82 and r = −0.61, respectively). The higher the upstream lake percentage, the lower the export indicating organic matter retention in lakes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号