首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated photosynthesis of five plant species growing in the understory at three sites (1,170-, 1,600- and 2,100-mm annual moisture inputs), along the geographical range of coastal California redwood forest, to determine whether greater inputs of rain and fog at northern sites enhance photosynthetic utilization of fluctuating light. Measurements of understory light environment and gas exchange were carried out to determine steady state and dynamic photosynthetic responses to light. Leaf area index ranged from 4.84 at the 2,100-mm site to 5.98 at the 1,170-mm site. Maximum rates of net photosynthesis and stomatal conductance (g) did not vary appreciably within species across sites. Photosynthetic induction after a change from low to high light was significantly greater in plants growing in lower light conditions regardless of site. Photosynthetic induction also increased with the rate of g in diffuse light, prior to the increase to saturating light levels. Post-illumination CO2 assimilation was the largest factor contributing to variation in C gain during simulated lightflecks. The duration of post-illumination photosynthetic activity, total CO2 assimilation per light received, and light use efficiency during simulated lightflecks increased significantly with moisture inputs in four out of five species. Increasing leaf N concentration with increasing moisture inputs in three out of five species, coupled with changes in leaf N isotopic composition with the onset of the summer fog season suggest that natural N deposition increases with rain and fog inputs and contributes to greater utilization of fluctuating light availability in coastal California redwood forests.  相似文献   

2.
? Premise of the study: Fog provides a critical water resource to plants around the world. In the redwood forest ecosystem of northern California, plants depend on fog absorbed through foliar uptake to stay hydrated during the rainless summer. In this study, we identified regions within the redwood ecosystem where the fern Polystichum munitum canopy most effectively absorbs fog drip that reaches the forest floor. ? Methods: We measured the foliar uptake capacity of P. munitum fronds at seven sites along 700 km of the redwood forest ecosystem. We quantified the canopy cover of P. munitum at each site and estimated how much water the fern canopy can acquire aboveground through fog interception and absorption. ? Key results: Throughout the ecosystem, nocturnal foliar uptake increased the leaf water content of P. munitum by 7.2%, and we estimated that the P. munitum canopy can absorb 5 ± 3% (mean ± SE) of intercepted fog precipitation. Strikingly, P. munitum had the highest foliar uptake capacity in the center of the ecosystem and may absorb 10% more of the fog its canopy intercepts in this region relative to other regions studied. Conversely, P. munitum had no foliar uptake capacity in the southern end of the ecosystem. ? Conclusions: This study shows the first evidence that foliar uptake varies within species at the landscape scale. Our findings suggest that the P. munitum at the southern tip of the redwood ecosystem may suffer most from low summertime water availability because it had no potential to acquire fog as an aboveground water subsidy.  相似文献   

3.
Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine‐scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind‐driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs’ ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high‐resolution historic climatic record, we developed multiple fine‐scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under ‘normal’ combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020–2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high‐resolution alternative to downscaled GCM outputs for near‐term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean–atmosphere dynamics that are not represented by coarse‐scale GCMs.  相似文献   

4.
Fog is thought to influence ecological function in coastal forests worldwide, yet few data are available that illuminate the mechanisms underlying this influence. In a California redwood forest we measured water and nitrogen (N) fluxes from horizontally moving fog and vertically delivered rain as well as redwood tree function. The spatial heterogeneity of water and N fluxes, water availability, tree water use, and canopy N processing varied greatly across seasons. Water and N fluxes to soil (annual average of 98% and 89%, respectively) across the whole forest occurred primarily in the rain season and was relatively even across the whole forest. In contrast, below-canopy flux of fog water and N declined exponentially from the windward edge to the forest interior. Following large fog events, soil moisture was greater at the windward edge than anywhere else in the forest. Physiological activity in redwoods reflected these differences in inputs across seasons: tree physiological responses did not vary spatially in the rain season, but in the fog season, water use was greater, yet water stress was less, in trees at the windward edge of the forest versus the interior. In both seasons, vertical passage through the forest changed the amount of water and form and concentration of N, revealing the role of the tree canopy in processing atmospheric inputs. Although total fog water inputs were comparatively small, they may have important ecosystem functions, including relief of canopy water stress and, where there is fog drip, functional coupling of above- and belowground processes. Author Contributions  We make no distinction in effort and contribution between the first and second authors or between the third and fourth authors. HAE and KCW were responsible for project design, oversight, data analysis, synthesis, and writing. PHT analyzed N samples and contributed significantly to interpretation of data. TED established the initial tree physiology study site, provided and analyzed the data on tree physiology, and contributed to the synthesis of these data. MKF first identified the lack of connection between inputs and microbial processing and catalyzed synthesis regarding belowground processing. AME created figures, performed field and laboratory work, and was database manager. VKSB collected field samples and carried out the litterfall study. All authors edited the paper.  相似文献   

5.
Control of mobile pests frequently requires area‐wide management (AWM) that spans commercial and non‐commercial habitats. Spatial modelling of habitat suitability can guide investment and implementation of AWM, but current approaches rarely capture population drivers, including local foraging, at an appropriate spatial resolution. To support the development of AWM for the fruit fly pest, Bactrocera tryoni (Tephritidae), we developed a habitat suitability model for the three premier fruit‐growing regions in south‐eastern Australia (~34,780 km2). Expert elicitation and published literature was used to develop a Bayesian network to model the drivers of B. tryoni habitat suitability, as determined by the ability of populations to persist and increase. The effect of uncertainty was tested through sensitivity analysis. The model was then linked with spatially explicit data (at 10 m resolution) to generate risk maps, using moving windows to capture local foraging movement. Habitat suitability was most strongly influenced by host availability within a distance of 200 m. Climate stress, and soil moisture for pupation, was also limiting. Experts were uncertain regarding the relative importance of drivers of host availability (host preference, host density, fruit seasonality), but this did not greatly affect model outputs. Independent trapping data supported model predictions, but their value was limited as traps were placed almost exclusively in optimal or suitable habitat. Amenability to AWM, when assessed as the ratio of suitable or optimal habitat that was under non‐horticultural versus horticultural land‐uses, differed by region (0.15–1.17). However, risk‐mapping did identify where ratios were locally most favourable (lowest). Also, predominantly local dispersal by B. tryoni suggests AWM for pest suppression could be applied at a landscape‐scale. Results show that a relatively simple model could capture the multi‐scale drivers of population dynamics and the complexity of landscapes sufficiently to guide AWM of a mobile pest.  相似文献   

6.
In Europe, agricultural practices have progressively evolved towards high productivity leading either to the intensification of productive and accessible areas or to the abandonment of less profitable sites. Both processes have led to the degradation of semi-natural habitats like extensive grasslands, threatening species such as the Eurasian Scops Owl Otus scops that rely on extensively managed agricultural landscapes. In this work, we aimed to assess the habitat preferences of the Scops Owl using habitat suitability models combined with a multi-scale approach. We generated a set of multi-scale predictors, considering both biotic and abiotic variables, built on two newly developed vegetation management and orthopteran abundance models. To select the variables to incorporate in a ‘best multi-scale model’, we chose the best spatial scale for each variable using univariate models and by calculating their relative importance through multi-model inference. Next, we built ensembles of small models (ESMs) at 10 different scales from 50 to 1000 m, and an additional model with each variable at its best scale (‘best multi-scale model’). The latter performed better than most of the other ESMs and allowed the creation of a high-resolution habitat suitability map for the species. Scops Owls showed a preference for dry sites with extensive and well-structured habitats with 30–40% bush cover, and relied strongly on semi-extensive grasslands covering at least 30% of the surface within 300 m of the territory centre and with high orthopteran availability near the centre (50-m radius), revealing a need for good foraging grounds near the nest. At a larger spatial scale within a radius of 1000 m, the habitat suitability of Scops Owls was negatively related to forest cover. The resulting ESM predictions provide valuable tools for conservation planning, highlighting sites in need of particular conservation efforts together with offering estimates of the percentage of habitat types and necessary prey abundance that could be used as targets in future management plans to ensure the persistence of the population.  相似文献   

7.
Fog in the California redwood forest: ecosystem inputs and use by plants   总被引:25,自引:0,他引:25  
T. E. Dawson 《Oecologia》1998,117(4):476-485
Fog has been viewed as an important source of moisture in many coastal ecosystems, yet its importance for the plants which inhabit these ecosystems is virtually unknown. Here, I report the results of a 3-year investigation of fog inputs and the use of fog water by plants inhabiting the heavily fog inundated coastal redwood (Sequoia sempervirens) forests of northern California. During the study period, 34%, on average, of the annual hydrologic input was from fog drip off the redwood trees themselves (interception input). When trees were absent, the average annual input from fog was only 17%, demonstrating that the trees significantly influence the magnitude of fog water input to the ecosystem. Stable hydrogen and oxygen isotope analyses of water from fog, rain, soil water, and xylem water extracted from the dominant plant species were used to characterize the water sources used by the plants. An isotopic mixing model was employed to then quantify how much fog water each plant used each month during the 3-year study. In summer, when fog was most frequent, ~19% of the water within S.sempervirens, and ~66% of the water within the understory plants came from fog after it had dripped from tree foliage into the soil; for S.sempervirens, this fog water input comprised 13–45% of its annual transpiration. For all plants, there was a significant reliance on fog as a water source, especially in summer when rainfall was absent. Dependence on fog as a moisture source was highest in the year when rainfall was lowest but fog inputs normal. Interestingly, during the mild El Niño year of 1993, when the ratio of rainfall to fog water input was significantly higher and fog inputs were lower, both the proportion and coefficient of variation in how much fog water was used by plants increased. An explanation for this is that while fog inputs were lower than normal in this El Niño year, they came at a time when plant demand for water was highest (summer). Therefore, proportional use of fog water by plants increased. The results presented suggest that fog, as a meteorological factor, plays an important role in the water relations of the plants and in the hydrology of the forest. These results demonstrate the importance of understanding the impacts of climatic factors and their oscillations on the biota. The results have important implications for ecologists, hydrologists, and forest managers interested in fog-inundated ecosystems and the plants which inhabit them.  相似文献   

8.
Experimental studies have shown that many species show preferences for different climatic conditions, or may die in unsuitable conditions. Climate envelope models have been used frequently in recent years to predict the presence and absence of species at large spatial scales. However, many authors have postulated that the distributions of species at smaller spatial scales are determined by factors such as habitat availability and biotic interactions. Climatic effects are often assumed by modellers to be unimportant at fine resolutions, but few studies have actually tested this. We sampled the distributions of 20 beetle species of the family Carabidae across three study sites by pitfall trapping, and at the national scale from monitoring data. Statistical models were constructed to determine which of two sets of environmental variables (temperature or broad habitat type) best accounted for the observed data at the three sites and at the national (Great Britain) scale. High‐resolution temperature variables frequently produced better models (as determined by AIC) than habitat features when modelling the distributions of species at a local scale, within the three study sites. Conversely, habitat was always a better predictor than temperature when describing species’ distributions at a coarse scale within Great Britain. Northerly species were most likely to occur in cool micro‐sites within the study sites, whereas southerly species were most likely to occur in warm micro‐sites. Effects of microclimate were not limited to species at the edges of their distribution, and fine‐resolution temperature surfaces should therefore ideally be utilised when undertaking climate‐envelope modelling.  相似文献   

9.
Plant ecology of tropical and subtropical karst ecosystems   总被引:1,自引:0,他引:1  
Substantial areas of tropical forests, including those within nine tropical biodiversity hotspots, contain karst landscapes that have developed on soluble carbonate rocks. Here, we review how the ecology of karst forest trees is influenced by hydrological, edaphic, and topographic factors that exhibit fine spatial heterogeneity. Comparative analysis of drought tolerance traits including wood density contributes to the assessment of whether karst tree species are more drought‐tolerant compared to non‐karst trees. Although karst ecosystems are generally considered to have low phosphorus availability, foliar nitrogen‐to‐phosphorus ratios exhibit wide variation across karst regions without a clear difference from non‐karst ecosystems. According to the analyses of leaf phenology, stem water storage, and isotopic signatures from xylem sap, water use strategies of karst trees can be classified into five types: (a) soil water dependent, (b) epikarst water dependent (mainly use water stored in fine pores and gaps within the epikarst rock during the dry season), (c) groundwater dependent, (d) fog water dependent, and (e) drought‐deciduous (shed leaves during the dry season). Overall, published data suggest that only a subset of karst tree species are exclusively distributed within karst hilltops where water availability is limited. The diverse resource acquisition and utilization strategies of karst plants across edaphic habitats must be considered when developing effective strategies to conserve and restore biodiversity in karst landscapes, which are under increasing anthropogenic pressure.  相似文献   

10.
The breeding grounds of migrant generation monarch butterflies in eastern North America are well known. In stark contrast the location of natal grounds of western migrants has not been delineated. We show that 55% of the area within seven western states was potential breeding range based on: (1) the occurrence of milkweed host plant species with phenology making them available during late-summer and (2) regional thermal conditions supportive of adult reproductive activity and development of immature stages. We next used a series of spatially explicit “bottom-up” regression models to test this first-approximation natal origins distribution. We tested for associations between variation in moisture availability at putative natal habitat and inter-annual variation in monarch abundance at western wintering sites for a 10 year period (1998–2007). Variation in moisture availability, as measured by Palmer’s drought severity index (PDSI), across the western region predicted monarch abundance patterns. In contrast and as expected, PDSI across known eastern breeding grounds did not predict variation in western monarch migrant abundance. The pattern of moisture availability was not uniform between states or within states and permitted similar tests of association at a finer geographical level. PDSI for California, Idaho, Nevada, and Oregon (but not Arizona, Utah, or Washington) were each significantly associated with monarch wintering abundance patterns with California exhibiting the strongest relationship. At a more focused spatial scale we tested the local recruitment hypothesis. This is the notion that western coastal wintering monarch populations derive only from nearby coastal breeding habitat and that monarchs do not migrate from more distant natal grounds. Variation in moisture availability within a block of three contiguous central California climate divisions (Sacramento Drainage, San Joaquin Drainage, and Southeast Desert Basin) significantly predicted inter-annual abundance of migrant generation monarchs. In contrast PDSI patterns of three coastal California climate divisions, i.e., ones local to wintering sites, as well as that of climate divisions in western Nevada and Arizona did not predict variation in monarch abundance at this more focused spatial resolution. Our findings suggest that moisture regimes act as a strong bottom-up driver of monarch abundance pattern via resource availability in western USA.  相似文献   

11.
Previous studies of the effects of fur trapping on marten populations have not considered habitat variation and how trappers use available habitat. We investigated the behavior of fur trappers with respect to roads, waterways, and the forest habitats on trap lines, using registered trap lines in northern Ontario as a study system. The objectives of this study were to 1) develop models for predicting trap location based on access and habitat features, 2) determine whether trappers target the same habitat preferred by American marten, and 3) investigate effects of spatial resolution on predictive models, using a geographic information system (GIS) for coarse resolution variables and direct forest mensuration for fine resolution variables. Distance to roads and water were by far the most influential factors in logistic models for predicting trap presence, accounting for 51.2–61.7% of the observed deviance. At a coarse spatial resolution, trappers selected sites that were close to vehicular access, and in older mixed wood forest stands. Similarly, at a coarse resolution, marten selected old stands, but dominated by coniferous trees. At a finer spatial resolution, trappers selected sites with high basal area of trees, pronounced proportion of black spruce, high canopy cover, and high density of coarse woody debris, consistent with previous studies on marten habitat selection at a fine resolution. Although coarse resolution models are easily applicable because of the wide availability of GIS land cover data, fine resolution models had greater predictive power when considering habitat variables. By quantifying trapper behaviors, these results suggest that the effectiveness of marten sanctuaries used in forest management depend not only on the age and species composition of forest stands left unlogged, but also on the degree to which they are accessible to trappers. © 2012 The Wildlife Society.  相似文献   

12.
在人类支配的景观中,生境退化已经导致多个物种种群数量不断减少,分布范围不断缩减。紫貂(Martes zibellina)为国家Ⅰ级重点保护动物,种群数量稀少,开展栖息地适宜性研究工作对制定科学的栖息地保护计划至关重要。于2021年1月-2022年8月在黑龙江省北极村国家级自然保护区采用样线调查法、足迹链跟踪、远红外相机监测综合收集到紫貂和猎物(雪兔)活动点信息。利用最大熵(MaxEnt)栖息地建模分析方法,首次在多个分辨率尺度背景下对紫貂种群的栖息地适宜性进行评价,研究结果表明:(1)利用ArcGIS 10.4重采样后在6个分辨率尺度(30m、60m、120m、240m、480m、960m)进行栖息地建模分析,基于主要栖息地变量因子对模型的贡献率及稳定性影响,并综合考虑研究区域面积,最终选定30m分辨率尺度作为紫貂栖息地最佳分析建模尺度,在30m分辨率尺度栖息地预测模型的曲线下面积(AUC)值为0.881;(2)研究发现猎物资源、植被类型和地形变量是影响紫貂栖息地适宜性的主要变量因子:雪兔出现概率较高、距草地与河流较近、海拔约400-600m、距常绿针叶林1.5km、距落叶针叶林约200m、坡向为50-250°的区域为紫貂的适宜栖息地;(3)栖息地适宜性分析表明,北极村国家级自然保护区紫貂适宜栖息地和次适宜栖息地面积共计23.66km2,约占保护区的17.2%,主要集中在保护区中部,而东部和西北部区域,栖息地破碎化较严重。基于模型结果与野外调查,提出了三条建议:(1)应严格控制人为活动,避免因人类干扰造成不适宜栖息地面积的持续扩大;(2)建立生态廊道促进保护区西部与中部紫貂种群进行个体交流,降低紫貂种群局部区域灭绝概率;(3)对东部地区破碎化的栖息地进行修复,扩大东部适宜栖息地面积,使破碎化的栖息地连接为整体。为分布于我国最北端的紫貂种群恢复创造条件,这对于构建该地区相对稳定的生物多样性保护空间格局有着重要意义。  相似文献   

13.
The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity.  相似文献   

14.
The potential distribution of critically rare or endangered species is necessary to assess species conservation status and guide recovery plans. Habitat models based on remotely sensed geospatial data are increasingly used to predict the suitability of sites for rare and endangered species, but in rapidly changing landscapes, habitat evaluations must reflect temporal as well as spatial variation of environmental suitability in order to properly inform management. We used field measurements of species occurrence, a 22-yr time series of satellite images, and the Maximum Entropy modeling approach (Maxent) to monitor spatio-temporal variation in habitat suitability of an endangered butterfly that uses riparian wetlands modified by beaver activity. We modeled the niche of the St. Francis' satyr Neonympha mitchellii francisci in an environment of remotely sensed metrics and projected the niche model over space and time to evaluate habitat dynamics and target sites for reintroduction efforts. Suitable habitat for the subspecies is currently distributed across the study area; however, most of the suitable area is unoccupied, and patches of the most suitable habitat have shifted over time in response to beaver activity and subsequent wetland succession, suggesting a negative interaction between dispersal limitation and landscape dynamics. Landcover changes complicate the recovery of critically threatened species such as N. m. francisci , but habitat monitoring over time can improve recovery plans, offer adaptive management strategies, and provide more exact criteria for species status assignment. Spatio-temporal extensions of the niche/habitat concept are made possible by long-term archives of remotely sensed data, and will likely prove most useful in rapidly changing landscapes.  相似文献   

15.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   

16.
Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional‐scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently‐collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2‐km spatial filter and by modeling separately two subregions separated by the 500‐m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground‐truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows (n = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground‐truth sites. Similarly, a site habitat quality index at ground‐truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site‐based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field‐validated models of similar resolution would assist in guiding management of conservation‐dependent species.  相似文献   

17.
Recent studies suggest that species distribution models (SDMs) based on fine‐scale climate data may provide markedly different estimates of climate‐change impacts than coarse‐scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse‐scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000‐fold range of spatial scales (0.008–16 km2). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate‐data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine‐ and coarse‐scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species' range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making.  相似文献   

18.
Coastal redwood (Sequoia sempervirens), the world's tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water entered the xylem via bark and reduced tracheid embolization. Moreover, prolonged bark wetting (16 h) partially restored xylem hydraulic conductivity in isolated branch segments and whole branches. Partial hydraulic recovery coincided with an increase in branch water potential from about ?5.5 ± 0.4 to ?4.2 ± 0.3 MPa, suggesting localized recovery and possibly hydraulic isolation. As bark water uptake rate correlated with xylem osmotic potential (R2 = 0.88), we suspect a symplastic role in transferring water from bark to xylem. Using historical weather data from typical redwood habitat, we estimated that bark and leaves are wet more than 1000 h per year on average, with over 30 events being sufficiently long (>24 h) to allow for bark‐assisted hydraulic recovery. The capacity to uptake biologically meaningful volumes of water via bark and leaves for localized hydraulic recovery throughout the crown during rain/fog events might be physiologically advantageous, allowing for relatively constant transpiration.  相似文献   

19.
Abstract: Although numerous studies have examined habitat use by raccoons (Procyon lotor), information regarding seasonal habitat selection related to resource availability in agricultural landscapes is lacking for this species. Additionally, few studies using radiotelemetry have investigated habitat selection at multiple spatial scales or core-use areas by raccoons. We examined seasonal habitat selection of 55 (31 M, 24 F) adult raccoons at 3 hierarchical orders defined by the movement behavior of this species (second-order home range, second-order core-use area, and third-order home range) in northern Indiana, USA, from May 2003 to June 2005. Using compositional analysis, we assessed whether habitat selection differed from random and ranked habitat types in order of selection during the crop growing period (season 1) and corn maturation period (season 2), which represented substantial shifts in resource availability to raccoons. Habitat rankings differed across hierarchical orders, between seasons within hierarchical orders, and between sexes within seasons; however, seasonal and intersexual patterns of habitat selection were not consistent across hierarchical orders of spatial scale. When nonrandom utilization was detected, both sexes consistently selected forest cover over other available habitats. Seasonal differences in habitat selection were most evident at the core-area scale, where raccoon selection of agricultural lands was highest during the maturation season when corn was available as a direct food source. Habitat use did not differ from availability for either sex in either season at the third-order scale. The selection of forest cover across both seasons and all spatial orders suggested that raccoon distribution and abundance in fragmented landscapes is likely dependent on the availability and distribution of forest cover, or habitats associated with forest (i.e., water), within the landscape. The lack of consistency in habitat selection across hierarchical scales further exemplifies the need to examine multiple biological scales in habitat-selection studies.  相似文献   

20.
Abstract Habitat availability is often regarded as the primary factor that limits population and community recovery in degraded ecosystems, and physical habitat is thus often targeted in restoration. The identification of which habitat(s) to attempt to restore is a critical step in the restoration process, but one for which there is often a paucity of useful information. Here we examine the distribution of fish in three lowland streams in Victoria, Australia, that have been degraded by severe sedimentation. We aim to identify habitats that are associated with high abundances of native fish, and that thus might be appropriate to target in habitat restoration. Associations between native fish abundances and physical habitat characteristics were examined at three spatial scales (among streams, among sites and within sites) to determine the types of habitat to which fish respond, and the scales over which these responses occur. Of the four species of native fish found in the streams, three (Galaxias olidus Günther, Gadopsis marmoratus (Richardson) and Nanoperca australis Günther) showed significant habitat associations at small spatial scales (i.e. within sites). In particular, these species were generally found in deeper water, and in close proximity to cover (typically either coarse or fine woody debris or vegetation). Differences in habitat availability among sites and streams were less influential, except in the case of G. marmoratus, which was completely absent from both the ephemeral streams. Although our results suggest that these species collectively respond to habitat at several spatial scales, fish distributions were allied to the presence of habitat structure at the scale of metres, the smallest spatial scale examined. We hypothesize that fish abundances are currently limited by the low availability of habitat at these small spatial scales. It may therefore be possible to increase fish abundances in these creeks by augmenting the amount of available habitat via stream restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号