首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In insects, wing shape and body size are correlated with several aspects of behaviour, and the optimal morphology of wings is a trade-off between a number of functional demands in relation to behaviour (e.g. foraging, migration and sexual display). Dragonflies are spectacularly skilful flyers and present a range of different wing shapes, but to date, no detailed studies have been conducted in this group on wing length allometry in relation to body size. In this paper, we use published data on body length and wing length in all European and North American dragonflies to investigate differences in wing length allometries among Odonata taxa (suborders and families) and to relate these to behavioural patterns. We found different wing allometries between Zygoptera and Anisoptera, which are probably related to the flight mode and wing form of the two suborders. Among the Anisoptera, the Libellulidae showed a distinct wing length allometry from all other anisopteran families and migrants differed from non-migrant species. The first dichotomy is likely to reflect the adaptation of wing morphology of Libellulidae to sit-and-wait behaviour and to brief foraging flights (most species of this family are perchers) with respect to all other families, members of which are typically flyers. The second dichotomy reflects the trend of migrating species to have relatively longer wings than non-migrating members of the same family. Finally, wing length allometry differed among all the zygopteran families analysed, and this pattern suggested that each family evolved a particular wing morphology in response to peculiarities in behaviour, habitat and flight mode.  相似文献   

2.
Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four‐decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40‐year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length – an index of body shape that impacts numerous aspects of avian ecology and behaviour – has consistently increased across species. Our findings suggest that warming‐induced body size reduction is a general response to climate change, and reveal a similarly consistent and unexpected shift in body shape. We hypothesise that increasing wing length represents a compensatory adaptation to maintain migration as reductions in body size have increased the metabolic cost of flight. An improved understanding of warming‐induced morphological changes is important for predicting biotic responses to global change.  相似文献   

3.
张宏杰 《四川动物》2012,31(4):611-613
2011年8月对广西大明山的蜻蜓物种资源进行了调查。结果表明广西大明山蜻蜓种类隶属2亚目11科46种,差翅亚目Anisoptera4科27种,束翅亚目Zygoptera7科19种。其中广西新纪录种8种(亚种)。  相似文献   

4.
Insect predation on pike fry   总被引:1,自引:0,他引:1  
Laboratory tests evaluated the predatory impact of the macroinvertebrates Erythromma najas larvae (Odonata, Zygoptera: Coenagrionidae), Notonecta glauca (Heteroptera: Notonectidae), Ilyocoris cimicoides (Heteroptera: Naucoridae), Libellula depressa larvae (Odonata, Anisoptera: Libellulidae), Dytiscus marginalis larvae (Coleoptera: Dytiscidae) and Anax imperator larvae (Odonata, Anisoptera: Aeshnidae) on 3-, 12-, 21- and 30-day-old pike fry Esox lucius . All these insect predators captured and ate pike fry during the test, although the numbers killed varied among species. Dytiscus marginalis, Anax imperator and Notonecta glauca were the most Voracious predators.  相似文献   

5.
Phylogenetic analysis of higher-level relationships of Odonata   总被引:3,自引:1,他引:2  
Abstract. This is the most comprehensive analysis of higher‐level relationships in Odonata conducted thus far. The analysis was based on a detailed study of the skeletal morphology and wing venation of adults, complemented with a few larval characters, resulting in 122 phylogenetically informative characters. Eighty‐five genera from forty‐five currently recognized families and subfamilies were examined. In most cases, several species were chosen to serve as exemplars for a given genus. The seven fossil outgroup taxa included were exemplar genera from five successively more distant odonatoid orders and suborders: Tarsophlebiidae (the closest sister group of Odonata, previously placed as a family within ‘Anisozygoptera’), Archizygoptera, Protanisoptera, Protodonata and Geroptera. Parsimony analysis of the data, in which characters were treated both under equal weights and implied weighting, produced cladograms that were highly congruent, and in spite of considerable homoplasy in the odonate data, many groupings in the most parsimonious cladograms were well supported in all analyses, as indicated by Bremer support. The analyses supported the monophyly of both Anisoptera and Zygoptera, contrary to the well known hypothesis of zygopteran paraphyly. Within Zygoptera, two large sister clades were indicated, one comprised of the classical (Selysian) Calopterygoidea, except that Amphipterygidae, which have traditionally been placed as a calopterygoid family, nested within the other large zygopteran clade comprised of Fraser's ‘Lestinoidea’ plus ‘Coenagrionoidea’ (both of which were shown to be paraphyletic as currently defined). Philoganga alone appeared as the sister group to the rest of the Zygoptera in unweighted cladograms, whereas Philoganga + Diphlebia comprised the sister group to the remaining Zygoptera in all weighted cladograms. ‘Anisozygoptera’ was confirmed as a paraphyletic assemblage that forms a ‘grade’ towards the true Anisoptera, with Epiophlebia as the most basal taxon. Within Anisoptera, Petaluridae appeared as the sister group to other dragonflies.  相似文献   

6.
Abstract.  According to biophysical principles, colour and size are important phenotypic factors that may influence body temperature and activity in ectothermic insects. In taxa showing female-limited polymorphism, males and female morphs differ in body colour, size and activity pattern. However, no previous study has evaluated whether such phenotypic and behavioural variation relates to differences between males and female morphs in thermal properties. In the present study, the relationships between body colour, size, activity and body temperature are examined under laboratory and field conditions, for the polymorphic damselfly Enallagma cyathigerum (Charpentier, 1840) (Odonata: Zygoptera). Contrary to expectation, males and female colour morphs of this species do not differ in thermal properties (i.e. heating characteristics or field body temperatures). When questioning phenotype and activity, temperature does not appear to be relevant for understanding the maintenance of female-limited polymorphism.  相似文献   

7.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

8.
We undertook a comprehensive morphological and molecular phylogenetic analysis of dragonfly phylogeny, examining both extant and fossil lineages in simultaneous analyses. The legitimacy of higher‐level family groups and the phylogenetic relationship between families were tested. Thirteen families were supported as monophyletic (Aeshnidae, Calopterygidae, Chlorocyphidae, Euphaeidae, Gomphidae, Isostictidae, Lestidae, Libellulidae, Petaluridae, Platystictidae, Polythoridae, Pseudostigmatidae and Synthemistidae) and eight as non‐monophyletic (Amphipterygidae, Coenagrionidae, Corduliidae, Megapodagrionidae, Protoneuridae and Synlestidae), although Perilestidae and Platycnemididae were recovered as monophyletic under Bayesian analyses. Nine families were represented by one species, thus monophyly was not tested (Epiophlebiidae, Austropetaliidae, Chlorogomphidae, Cordulegastridae, Macromiidae, Chorismagrionidae, Diphlebiidae, Lestoideidae and Pseudolestidae). Epiprocta and Zygoptera were recovered as monophyletic. Ditaxinerua is supported as the sister lineage to Odonata, Epiophlebiidae and the lestid‐like damselflies are sister to the Epiprocta and Zygoptera, respectively. Austropetaliidae + Aeshnidae is the sister lineage to the remaining Anisoptera. Tarsophlebia's placement as sister to Epiprocta or as sister to Epiprocta + Zygoptera was not resolved. Refinements are made to the current classification. Fossil taxa did not seem to provide signals crucial to recovering a robust phylogeny, but were critical to understanding the evolution of key morphological features associated with flight. Characters associated with wing structure were optimized revealing two wing character complexes: the pterostigma–nodal brace complex and the costal wing base & costal–ScP junction complex. In turn, these two complexes appear to be associated; the pterostigma–nodal brace complex allowing for further modification of the wing characters comprised within the costal wing base & costal–ScP junction complex leading the modern odonate wing. © The Willi Hennig Society 2008.  相似文献   

9.
We examined influences on wing and body size in 11 species (12 strains) of Drosophila. Six measures of wing length and width were closely correlated with wing area and suggested little variation in wing shape among the species. Among ten species wing loading, an important factor in flight costs and manoeuvrability, increased as body mass increased at a rate consistent with expectations from allometric scaling of wing area and body mass to body length. Intraspecific variation in wing loading showed similar relationships to body mass. Density and temperature during larval development influenced wing loading through general allometric relations of body size and wing area. Temperature during the pupal stage, but not during wing hardening after eclosion, influenced wing area independently of body size. Wing area increased as growth temperature decreased. Individuals reared at cooler temperatures thus compensated for a potential allometric increase in wing loading by differentially enlarging the wing area during pupal development.  相似文献   

10.
Adipokinetic neuropeptides from the corpora cardiaca of the major families of all three suborders of the Odonata were identified by one or more of the following methods: (1) Isolation of the peptides from a methanolic extract of the corpora cardiaca by liquid chromatography, peak monitoring by fluorescence of the Trp residue and comparison of the retention time with those of known synthetic peptides of Odonata. (2) Hyperlipaemic bioassays of the HPLC-generated fractions either in Locusta migratoria or, in a few cases, in Anax imperator or Orthetrum julia. (3) Sequencing of the isolated, bioactive HPLAC fraction by Edman degradation. (4) Mass spectrometric measurement of the isolated, bioactive fraction. Sequence assignment revealed that the investigated Odonata species always contain only one adipokinetic peptide. This is always an octapeptide. The suborder Zygoptera contains the peptide code-named Psein-AKH, the Anisozygoptera and the families Aeshnidae, Cordulegastridae and Macromiidae of the Anisoptera contain Anaim-AKH, whereas Gomphidae, Corduliidae (with the exception of Syncordulia gracilis) and Libellulidae contain Libau-AKH; one species of Libellulidae has Erysi-AKH, a very conservative modification of Libau-AKH (one point mutation). When these structural data are interpreted in conjunction with existing phylogenies of Odonata, they support the following: (1) Zygoptera are monophyletic and not paraphyletic. (2) Anisozygoptera and Anisoptera are sister groups and contain the ancestral Anaim-AKH which is independently and convergently mutated to Libau-AKH in Gomphidae and Libellulidae. (3) The Corduliidae are of special interest. Only Corduliidae sensu stricto appear to contain Libau-AKH, other species placed into this family by most authorities contain the ancestral Anaim-AKH. Possibly, assignments of AKHs can untangle the paraphyly of this family.  相似文献   

11.
In this study, we sequenced both two mitochondrial genes (COI and 16S rRNA) and nuclear genes (28S rRNA and elongation factor‐1α) from 71 species of Odonata that represent 7 superfamilies in 3 suborders. Phylogenetic testing for each two concatenated gene sequences based on function (ribosomal vs protein‐coding genes) and origin (mitochondrial vs nuclear genes) proved limited resolution. Thus, four concatenated sequences were utilized to test the previous phylogenetic hypotheses of higher taxa of Odonata via Bayesian inference (BI) and maximum likelihood (ML) algorithms, along with the data partition by the BI method. As a result, three slightly different topologies were obtained, but the BI tree without partition was slightly better supported by the topological test. This topology supported the suborders Anisoptera and Zygoptera each being a monophyly, and the close relationship of Anisozygoptera to Anisoptera. All the families represented by multiple taxa in both Anisoptera and Zygoptera were consistently revealed to each be a monophyly with the highest nodal support. Unlike consistent and robust familial relationships in Zygoptera those of Anisoptera were partially unresolved, presenting the following relationships: ((((Libellulidae + Corduliidae) + Macromiidae) + Gomphidae + Aeshnidae) + Anisozygoptera) + (((Coenagrionidae + Platycnemdidae) + Calopterygidae) + Lestidae). The subfamily Sympetrinae, represented by three genera in the anisopteran family Libellulidae, was not monophyletic, dividing Crocothemis and Deielia in one group together with other subfamilies and Sympetrum in another independent group.  相似文献   

12.
1. Climate change is expected to produce shifts in species distributions as well as behavioural, life-history, and/or morphological adaptations to find suitable conditions or cope with the altered environment. Most of our knowledge on this issue comes from studies on vertebrates, mainly endotherm species. However, it remains uncertain how small ectotherms, such as insects, respond to increased temperature. 2. This study tested whether climate change over the last 100 years (1904–2013) has affected morphological and functional traits in workers of the social wasp Dolichovespula sylvestris in the Iberian Peninsula. 3. Head width and forewing length, as well as body mass and wing area (assuming no change in shape), decreased over time and with increased mean annual temperature, even when controlling for geographical location and altitude. Interestingly, wing size decreased with a steeper slope compared with body size. If there is no change in wing shape, this would lead to an invariable wing loading (body mass:wing area ratio) over time, with potential consequences on flying ability of more recent (and thus smaller) wasp individuals. 4. These results suggest that recent climate change is leaving morphological signatures in social wasps, increasing the evidence for this phenomenon in insects. The data furthermore suggest that the known efficient thermoregulatory ability of social insect colonies may not successfully buffer the effect of global warming.  相似文献   

13.
Hawking  J. H.  New  T. R. 《Hydrobiologia》1999,392(2):249-260
Sampling of larval and adult Odonata from 16 sites along the Kiewa River, Victoria, yielded 34 species: 10 Zygoptera, 24 Anisoptera. Patterns of larval and adult incidence were appraised, and showed that most species were restricted in incidence to several consecutive sites along the river, and that there is clear distinction also between the faunas of the potamon, rhithron and eucrenon regions. Different species of some genera of Anisoptera displayed different zonational distributions, and patterns of incidence and relative abundance of larvae and adults confirmed zonational occupancy. For larvae, these distribution patterns transcended the mode of collection, although many species were found most abundantly in one microhabitat or by one of several sampling methods employed at each site. Sampling of the two stages separately showed considerable concurrence of distributional patterns, so that either stage alone may provide data of value in faunal and conservation assessment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Changes in morphology have been postulated as one of the responses of animals to global warming, with increasing ambient temperatures leading to decreasing body size. However, the results of previous studies are inconsistent. Problems related to the analyses of trends in body size may be related to the short-term nature of data sets, to the selection of surrogates for body size, to the appropriate models for data analyses, and to the interpretation as morphology may change in response to ecological drivers other than climate and irrespective of size. Using generalized additive models, we analysed trends in three morphological traits of 4529 specimens of eleven bird species collected between 1889 and 2010 in southern Germany and adjacent areas. Changes and trends in morphology over time were not consistent when all species and traits were considered. Six of the eleven species displayed a significant association of tarsus length with time but the direction of the association varied. Wing length decreased in the majority of species but there were few significant trends in wing pointedness. Few of the traits were significantly associated with mean ambient temperatures. We argue that although there are significant changes in morphology over time there is no consistent trend for decreasing body size and therefore no support for the hypothesis of decreasing body size because of climate change. Non-consistent trends of change in surrogates for size within species indicate that fluctuations are influenced by factors other than temperature, and that not all surrogates may represent size appropriately. Future analyses should carefully select measures of body size and consider alternative hypotheses for change.  相似文献   

15.
Field experiments using small replicated enclosures focused on interactions between larval populations of Epitheca cynosura and Ladona deplanata (Odonata: Anisoptera) — two species that emerge in early spring. The presence of Epitheca reduced the total biomass of Ladona, but Ladona had no significant effect on Epitheca. These early-emerging species reduced the biomass of small instars of late-emerging Anisoptera which colonized enclosures during the experiments; and the late-emerging Anisoptera seem to have inhibited colonization by Zygoptera larvae. Results are consistent with the importance of predatory (cannibalism or mutual predation) interactions in this community.  相似文献   

16.
This study obtained baseline information for adult Odonata and assessed their conservation priorities and suitability as biological indicators in S’Albufera Natural Park in Mallorca, Spain. At this site, human activities in and around the wetland have raised concerns about their impact on the ecosystem. Investigations on adult diversity produced records of 14 species (four Zygoptera and 10 Anisoptera) and included the first record of Erythromma viridulum for the park. Detrended Correspondence Analysis (DCA) ordination categorised study sites according to their geographical locations in the park and showed clustering of the sites around particular species based on these locations. This pattern might reflect the differences in brackishness in water supplied by different water sources. Canonical Correspondence Analysis (CCA) indicated that some environmental factors were related to particular species. Water flow, vegetation, and depth and size of a water body could discriminate stenotopic species from eurytopic species. Only a few species appeared to be tolerant to the sites with high salinity and low oxygen concentration. The ordination results can be useful for establishing conservation priorities with information of species diversity, abundance, distribution and flight period. Although, with the current limited basic information, the use of Odonata species as biological indicators seems to be difficult, some clear relationships between environmental factors and particular species indicate the great potential of using adult Odonata as biological indicators in the park.  相似文献   

17.
动物中普遍存在雌雄个体身体大小的性二态现象。了解近缘种之间身体大小性二态现象的差异,可为深入探讨身体大小性二态现象的潜在驱动机制提供证据。国外对欧亚大山雀(Parus major)的研究发现,其喙长、跗跖长、翅长等 6 项身体大小指标存在着明显的性二态,且喙长的性二态存在季节间差异。大山雀(P. cinereus)曾被作为欧亚大山雀的一个亚种,其形态和行为与欧亚大山雀存在着诸多相似之处。为探讨大山雀是否也存在身体大小性二态及季节性差异,本研究分析了 2018 至 2020 年间在河南董寨国家级自然保护区捕捉的 226 只(雌性 96 只和雄性 130 只)大山雀的喙长、头喙长、跗跖长、翅长、尾长和体长这 6 项体征指标的两性差异及其季节变化。结果显示,大山雀上述 6 项身体大小指标均存在不同程度的性二态现象,且雄性个体仅喙长与雌性的差异不显著,其余 5 项指标均显著大于雌性。此外,身体大小指标的两性差异不随季节显著变化,但两性的跗跖长在秋季均显著短于冬季和繁殖季,尾长在繁殖季均显著长于秋季和冬季。上述结果表明,大山雀身体大小的性二态及其季节性差异与欧亚大山雀并不完全相似。无论其身体大小存在性二态和季节变化的原因,还是其与欧亚大山雀在身体大小性二态模式上的差别,都有待今后进一步的研究。  相似文献   

18.
S.J. McCauley 《水生昆虫》2013,35(3-4):195-204
Morphology is an important determinant of flight performance and can shape species’ dispersal behaviour. This study contrasted the morphology of flight-related structures in dragonfly species with different dispersal behaviours to gain insights into the relationship between morphology and dispersal behaviour. Specifically, wing size, wing shape and thorax size were compared in three co-occurring species from different clades within the genus Libellula (Odonata: Anisoptera: Libellulidae) to assess how these morphological traits are related to differences in dispersal behaviour and to how broadly their larvae occur across a habitat gradient. Two species had broad larval habitat distributions as well as high rates and distances of dispersal. These two species had relatively larger wings and thoraces than the third species, which was found only in permanent lakes and had limited dispersal. The hind-wings of more dispersive species also had lower aspect ratios and a relatively wider basal portion of the wing than the less dispersive species. Broad hind-wings may facilitate the use of gliding flight and reduce the energetic costs of dispersal. Determining the morphological traits associated with alternative dispersal behaviours may be a useful tool to assess the differential dispersal capacities of species or populations.  相似文献   

19.
Latitudinal shifts in body size of Enallagma cyathigerum (Odonata)   总被引:1,自引:0,他引:1  
Aim Survey of the latitudinal body size pattern for populations of Enallagma cyathigerum (Odonata) across a south‐north transect. Location A transect covering the whole distribution range from south to north across Europe was sampled. Methods Newly emerged adults were collected from five major sites across Europe and one to four localities were sampled within each site. In total 253 adults were collected from fourteen localities. Body size was measured using thorax length, length of right front wing and length of right hind tibia. These body size estimates were thereafter related to latitude and mean temperature in January and July. Results Body size showed a U‐shaped pattern with latitude, being large at low and high latitudes and small at intermediate latitudes. The same U‐shaped pattern was found for mean January and July temperature, with large animals at low and high temperatures. Conclusion The U‐shaped relationship between body size and latitude is suggested to be a combination of two effects: (1) the length of the season favourable for growth and development, and (2) variation in life cycle length with latitude.  相似文献   

20.
Habitat‐forming species provide refuges for a variety of associating species; these refuges may mediate interactions between species differently depending on the functional traits of the habitat‐forming species. We investigated refuge provisioning by plants with different functional traits for dragonfly and damselfly (Odonata: Anisoptera and Zygoptera) nymphs emerging from water bodies to molt into their adult stage. During this period, nymphs experience high levels of predation by birds. On the shores of a small pond, plants with mechanical defenses (e.g., thorns and prickles) and high structural complexity had higher abundances of odonate exuviae than nearby plants which lacked mechanical defenses and exhibited low structural complexity. To disentangle the relative effects of these two potentially important functional traits on nymph emergence‐site preference and survival, we conducted two fully crossed factorial field experiments using artificial plants. Nymphs showed a strong preference for artificial plants with high structural complexity and to a lesser extent, mechanical defenses. Both functional traits increased nymph survival but through different mechanisms. We suggest that future investigations attempt to experimentally separate the elements contributing to structural complexity to elucidate the mechanistic underpinnings of refuge provisioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号