首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the genetic basis for evolutionary divergence among geographic populations of the pitcher-plant mosquito, Wyeomyia smithii, using protein electrophoresis and line-cross analysis. Line-cross experiments were performed under both low density, near-optimal conditions, and at high, limiting larval densities sufficient to reduce fitness (rc) in parental populations by approximately 50%. We found high levels of electrophoretic divergence between ancestral and derived populations, but low levels of divergence between two ancestral populations and between two derived populations. Assessed under near-optimal conditions, the genetic divergence of fitness (rc) between ancestral and derived populations, but not between two derived populations or between two ancestral populations, has involved both allelic (dominance) and genic (epistatic) interactions. The role of dominance and epistasis in the divergence of rc among populations affects its component traits in a pattern that is unique to each cross. Patterns of genetic differentiation among populations of W. smithii provide evidence for a topographically complex “adaptive landscape” as envisioned by Wright in his “shifting balance” theory of evolution. Although we cannot definitively rule out the role of deterministic evolution in the divergence of populations on this landscape, ecological inference and genetic data are more consistent with a stochastic than a deterministic process. At high, limiting larval density, hybrid vigor is enhanced and the influence of epistasis disappears. Thus, under stressful conditions, the advantages to fitness due to hybrid heterozygosity can outweigh the deleterious effects of fragmented gene complexes. These results have important implications for the management of inbred populations. Outbreeding depression assessed in experimental crosses under benign lab, zoo, or farm conditions may not accurately reveal the increased advantages of heterozygosity in suboptimal or marginal conditions likely to be found in nature.  相似文献   

2.
Populations of Drosophila melanogaster were maintained for 36 generations in r- and K-selected environments in order to test the life-history predictions of theories on density-dependent selection. In the r-selection environment, populations were reduced to low densities by density-independent adult mortality, whereas populations in the K-selection environment were maintained at their carrying capacity. Some of the experimental results support the predictions or r- and K-selection theory; relative to the r-selected populations, the K-selected populations evolved an increased larval-to-adult viability, larger body size, and longer development time at high larval densities. Mueller and Ayala (1981) found that K-selected populations also have a higher rate of population growth at high densities. Other predictions of the thoery are contradicted by the lack of differences between the r and K populations in adult longevity and fecundity and a slower rate of development for r-selected individuals at low densities. The differences between selected populations in larval survivorship, larval-to-adult development time, and adult body size are strongly dependent on larval density, and there is a significant interaction between populations and larval density for each trait. This manifests an inadequacy of the theory on r- and K-selection, which does not take into account such interactions between genotypes and environments. We describe mechanisms that may explain the evolution of preadult life-history traits in our experiment and discuss the need for changes in theories of density-dependent selection.  相似文献   

3.
In a stable environment, evolution maximizes growth rates in populations that are not density regulated and the carrying capacity in the case of density regulation. In a fluctuating environment, evolution maximizes a function of growth rate, carrying capacity and environmental variance, tending to r‐selection and K‐selection under large and small environmental noise, respectively. Here we analyze a model in which birth and death rates depend on density through the same function but with independent strength of density dependence. As a special case, both functions may be linear, corresponding to logistic dynamics. It is shown that evolution maximizes a function of the deterministic growth rate r0 and the lifetime reproductive success (LRS) R0, both defined at small densities, as well as the environmental variance. Under large noise this function is dominated by r0 and average lifetimes are small, whereas R0 dominates and lifetimes are larger under small noise. Thus, K‐selection is closely linked to selection for large R0 so that evolution tends to maximize LRS in a stable environment. Consequently, different quantities (r0 and R0) tend to be maximized at low and high densities, respectively, favoring density‐dependent changes in the optimal life history.  相似文献   

4.
A quantitative genetic model of density-dependent selection is presented and analysed with parameter values obtained from laboratory selection experiments conducted by Mueller and his coworkers. The ecological concept of r- and K-selection is formulated in terms of selection gradients on underlying phenotypic characters that influence the density-dependent measure of fitness. Hence the selection gradients on traits are decomposed into two components, one that changes in the direction to increase r, and one that changes in the direction to increase K. The relative importance of the two components is determined by temporal fluctuations in population density. The evolutionary rate of r and K (per-generation changes in r and K due to the genetic responses of the underlying traits) is also formulated. Numerical simulation has shown that with moderate genetic variances of the underlying characters, r and K can evolve rapidly and the evolutionary rate is influenced by synergistic interaction between characters that contribute to r and K. But strong r-selection can occur only with severe and continuous disturbances of populations so that the population density is kept low enough to prevent K-selection.  相似文献   

5.
This work explores theoretical patterns of reproduction that maximize the production of resting eggs and the long-term fitness of genotypes in cyclical parthenogens. Our focus is on density-dependent reproduction as it influences the consequences of a trade-off between producing amictic daughters – which reproduce parthenogenetically and subitaneously – and producing mictic daughters – which undergo meiosis and bisexual reproduction. Amictic females increase competitive ability and allow the population to achieve a larger size; mictic females directly contribute to population survival through harsh periods by producing resting eggs. Although morphologically indistinguishable, the two types of females differ greatly in their ecological and reproductive roles. What factors underlie the differential allocation of resources to produce amictic and mictic females? Using a demographic model based on readily accessible parameters we demonstrate the existence of a frequency of mictic females that will maximize the population's long-term fitness. This frequency, termed the optimal mictic ratio, mo, is 1 ? (q/b)1/2, where q is the mortality rate and b is the maximum birth rate. Using computer simulation we compared the fitness of a population with this constant mictic ratio with populations having multiple switches from complete parthenogenetic growth to complete allocation in mixis (mictic ratio either 0 or 1). Two important conclusions for optimal mixis in density-dependent growth conditions are: (1) intermediate mictic ratios are optimal, and (2) optimal mictic ratios are higher when habitat conditions are better. Physiological cues responding to differences in birth and death rates are common so that it is possible that populations may adjust their relative rates of mictic and amictic female production in response to environmentally induced changes to the optimum mictic ratio. Our analysis demonstrates that different patterns of mixis are expected in different type of habitats. Since the optimal mictic ratio is sensitive to the effects of a variety of environmental challenges, our model makes possible a new means to evaluate life history evolution in cyclical parthenogens.  相似文献   

6.
I evaluated demographic parameters as indicators of fitness by calculating the net reproductive rate (R0), exponential rate of change (r), lifetime reproductive success (LRS), and Malthusian parameter (m) for nine genotypes and four phenotypes (two alleles at each of two independent loci) of an age-structured population. The given starting conditions included age-specific survival rates of males and females and age-specific fecundity of females for each genotype (to simplify the problem I presumed no differences in survivorship or fecundity of genotypes with the same phenotype) and the same age structure for each genotype. The prevailing genotype had the greatestm, but it did not have the greatestr,R0, or LRS, or even the greatest survivorship of either juveniles or adults, or the greatest fecundity. This result indicates thatmis the only correct measure of fitness (i.e., as a predictor of which genotype should prevail from among a group of genotypes) and that comparisons ofr,R0, LRS, juvenile or adult survival rates, or fecundity may be misleading indicators of which genotype should prevail (i.e., be most “fit”) over time (i.e., be selected for).  相似文献   

7.
The analysis of evolutionary models requires an appropriate definition for fitness. In this paper, I review such definitions in relation to the five major dimensions by which models may be described, namely (i) finite versus infinite (or very large) population size, (ii) type of environment (constant, fixed length, temporally stochastic, temporally predictable, spatially stochastic, spatially predictable and social environment), (iii) density-independent or density-dependent, (iv) inherent population dynamics (equilibrium, cyclical and chaotic), and (v) frequency-dependent or independent. In simple models, the Malthusian parameter ‘r’ or the net reproductive rate R 0 may be satisfactory, but once density-dependence or complex population dynamics is introduced the invasion exponent should be used. Defining fitness in a social environment or when there is frequency-dependence requires special consideration.  相似文献   

8.
Because interactions among plants are spatially local, the scale of environmental heterogeneity can have large effects on evolutionary dynamics. However, very little is known about the spatial patterns of variation in fitness and the relative magnitude of spatial and temporal variation in selection. Replicates of 12 genotypes of Erigeron annuus (Asteraceae) were planted in 288 locations within a field, separated by distances of 0.1 to 30.0 m, and replicated in two years. In a given year, most spatial variation in relative fitness (genotype-environment [G × E] interactions for fitness) occurred over distances of only 50 cm. Year effects were as large or larger than the spatial variation in fitness; in particular there was a large, three-way, genotype-year-environment interaction at the smallest spatial scale. The genetic correlation of fitness across years at a given location was near zero, 0.03. Thus, the relative fitness of genotypes is spatially unpredictable and a map of the selective environment has constantly shifting locations of peaks and valleys. Including measurements of soil nutrients as covariates in the analysis removed most of the spatial G × E interaction. Vegetation and microtopography had no effect on the G × E terms, suggesting that differential response to soil nutrients is the cause of spatial variation in fitness. However, the slope of response to NH4 and P04 was negative; therefore the soil nutrients are probably just indicators of other, unknown, environmental factors. We explored via simulation the evolutionary consequences of spatial and temporal variation in fitness and showed that, for this system, the spatial scale of variation was too fine grained (by a factor of 3 to 5) to be a powerful force maintaining genetic variation in the population. The inclusion of both spatial and temporal variation in fitness actually reduced the coexistence of genotypes compared to pure spatial models. Thus the presence of spatial or temporal variation in selection does not guarantee that it is an effective evolutionary force maintaining diversity. Instead the pattern of selection favors generalist genotypes.  相似文献   

9.
Intralocus sexual conflict (IaSC) occurs when selection at a given locus favors different alleles in males and females, placing a fundamental constraint on adaptation. However, the relative impact of IaSC on adaptation may become reduced in stressful environments that expose conditionally deleterious mutations to selection. The genetic correlation for fitness between males and females (rMF) provides a quantification of IaSC across the genome. We compared IaSC at a benign (29°C) and a stressful (36°C) temperature by estimating rMFs in two natural populations of the seed beetle Callosobruchus maculatus using isofemale lines. In one population, we found substantial IaSC under benign conditions signified by a negative rMF (?0.51) and, as predicted, a significant reduction of IaSC under stress signified by a reversed and positive rMF (0.21). The other population displayed low IaSC at both temperatures (rMF: 0.38; 0.40). In both populations, isofemale lines harboring alleles beneficial to males but detrimental to females at benign conditions tended to show overall low fitness under stress. These results offer support for low IaSC under stress and suggest that environmentally sensitive and conditionally deleterious alleles that are sexually selected in males mediate changes in IaSC. We discuss implications for adaptive evolution in sexually reproducing populations.  相似文献   

10.
Aspects of life-table studies and functional response of Lysiphlebia mirzai   总被引:1,自引:0,他引:1  
The fecundity, reproductive rate, and survival of Lysiphlebia mirzai parasitising third instar nymphs of the cereal aphid Rhopalosiphum maidis were measured at six different host densities under constant laboratory conditions. The survival rate (lx) of the female parasitoids was unaffected by host density, with an average adult life-span of 5–6 days at all densities. The age-specific fecundity rate (mx) was host density-dependent. The value of mx decreased rapidly from the first day of parasitisation. The number of hosts available determined the maximum possible number of mummies. At 200 hosts available per day, the average fecundity was 184.6 mummies/female; the maximum number of mummies yielded by any female was 200. The relationship between host density and the number of aphids parasitised per female was linear at 50 aphids/cage/day, but at higher host densities (100 aphids/cage/day) a significant curvilinear regression was observed. The intrinsic rate of natural increase (rm) increased with increasing host density. Maximum value of rm (0.262) was obtained at a host density of 200. The response of rm to changes in host density and parasitoid sex ratio is shown. A typical type II functional response was observed for L. mirzai. The curve was described by a logistic curve, Np=200/[1+exp(5.65–1.60 ln No)]. The search rate of the parasitoid was inverse host density-dependent. No significant variation in the sex ratio of F1 offspring was observed at different initial host densities. Sex ratio values exceeded 0.5 at all host densities. The results evaluated the reproductive potential of L. mirzai as a promising biological control agent.  相似文献   

11.
The independent evolution of males and females is typically constrained by shared genetic variance. Despite substantial research, we still know little about the evolution of cross‐sex genetic covariance and its standardized measure, the cross‐sex genetic correlation (rMF). In particular, it is unclear if rMF tend to vary with age. We compiled 28 traits for which ontogenetic trends in rMF were documented. Decreases in rMF with age were observed significantly more often than increases and the mean effect size for the relationship between rMF and age was large and negative. This suggests that sexual dimorphism (SD) may typically evolve more readily for phenotypes expressed later in ontogeny and that evolutionary inferences related to the evolution of SD should be limited to the ontogenetic stage at which rMF was estimated. Knowledge about ontogenetic variation in rMF should help improving our understanding of evolutionary patterns related to SD and the resolution of intralocus sexual conflicts.  相似文献   

12.
The fitness effects of mutations are context specific and depend on both external (e.g., environment) and internal (e.g., cellular stress, genetic background) factors. The influence of population size and density on fitness effects are unknown, despite the central role population size plays in the supply and fixation of mutations. We addressed this issue by comparing the fitness of 92 Keio strains (Escherichia coli K12 single gene knockouts) at comparatively high (1.2×107 CFUs/mL) and low (2.5×102 CFUs/mL) densities, which also differed in population size (high: 1.2×108; low: 1.25×103). Twenty-eight gene deletions (30%) exhibited a fitness difference, ranging from 5 to 174% (median: 35%), between the high and low densities. Our analyses suggest this variation among gene deletions in fitness responses reflected in part both gene orientation and function, of the gene properties we examined (genomic position, length, orientation, and function). Although we could not determine the relative effects of population density and size, our results suggest fitness effects of mutations vary with these two factors, and this variation is gene-specific. Besides being a mechanism for density-dependent selection (r-K selection), the dependence of fitness effects on population density and size has implications for any population that varies in size over time, including populations undergoing evolutionary rescue, species invasions into novel habitats, and cancer progression and metastasis. Further, combined with recent advances in understanding the roles of other context-specific factors in the fitness effects of mutations, our results will help address theoretical and applied biological questions more realistically.  相似文献   

13.
In order to study the relationship between selection on an enzyme and the environment, viability was measured for genotypes at the α-amylase (Amy) locus of D. pseudoobscura on food containing either starch as the primary source of carbohydrates or, as a control, maltose, the breakdown product of starch by amylase. These conditions were chosen to reveal possible differences among these genotypes in their abilities to survive on starch food. Counted numbers of larvae were cultured on food with low or high levels of starch, or with maltose, at both 20°C and 25°C. Only under the most stressful environmental conditions, on food with a low starch concentration at 25°C, did the genotypes differ significantly in viability. Four population cages maintained on food with either maltose or starch as carbohydrate sources were set up to assay differences in overall fitness among the Amy genotypes. No selective differences were observed over 10 generations, and we infer that components of fitness other than viability also differed little among the Amy genotypes on the two types of food. Thus our efforts to manipulate the environmental levels of starch, the substrate of amylase, led to measurable selective differences only under very stressful conditions.  相似文献   

14.
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   

15.
16.
Although empirical studies frequently suggest that genotype-by-environment (G X E) interaction can maintain genetic variation, very few data are available to test for the specific conditions necessary for the existence of a protected polymorphism (i.e., the property of persistence of an allele even when initially rare). Drosophila species live in patchy environments and their local population structure may be characterized to some extent by Levene's migration pattern, namely by a single pool of individuals that presumably mate at random and breed on discrete and ephemeral resources. We present here a field experiment that links Drosophila ecology and population genetics, which used the alcohol dehydrogenase (Adh) and α-glycerophosphate dehydrogenase (αGpdh) polymorphic loci in D. melanogaster flies raised from Opuntia ficus-indica fruits (prickly pears). The results show that there is density-dependent mortality in those fruits with a relatively high number of larvae (i.e., selection is “soft”) and suggest that there is differential viability for αGpdh genotypes. Additionally, a pattern of G X E interaction for fitness values, which is fully compatible with the theoretical conditions required for the existence of a protected polymorphism, was found after weighting the fitness estimates by the relative contribution that each fruit makes to the total adult population. The strong association between AdhS and αGpdhF alleles suggests that the occurrence of the common cosmopolitan inversion In(2L)t in the population might be responsible for the negative frequency-dependent selection predicted by Levene's model when genetic variation persists in heterogeneous environments.  相似文献   

17.
This study explored genetic variation and co‐variation in multiple functional plant traits. Our goal was to characterize selection, heritabilities and genetic correlations among different types of traits to gain insight into the evolutionary ecology of plant populations and their interactions with insect herbivores. In a field experiment, we detected significant heritable variation for each of 24 traits of Oenothera biennis and extensive genetic covariance among traits. Traits with diverse functions formed several distinct groups that exhibited positive genetic covariation with each other. Genetic variation in life‐history traits and secondary chemistry together explained a large proportion of variation in herbivory (r2 = 0.73). At the same time, selection acted on lifetime biomass, life‐history traits and two secondary compounds of O. biennis, explaining over 95% of the variation in relative fitness among genotypes. The combination of genetic covariances and directional selection acting on multiple traits suggests that adaptive evolution of particular traits is constrained, and that correlated evolution of groups of traits will occur, which is expected to drive the evolution of increased herbivore susceptibility. As a whole, our study indicates that an examination of genetic variation and covariation among many different types of traits can provide greater insight into the evolutionary ecology of plant populations and plant–herbivore interactions.  相似文献   

18.
Recognizing the predominant mode of selection in hybrid systems is important in predicting the evolutionary fate of recombinant genotypes. Natural selection is endogenous if hybrid genotypes are at a disadvantage relative to parental species independent of environment. Alternatively, relative fitness can vary in response to environmental variation (exogenous selection), and hybrid genotypes can possess fitness values equal to or greater than that of parental species. I investigated the nature of natural selection in a leopard frog hybrid system by rearing larvae of hybrid and parental genotypes between Rana blairi and R. sphenocephala in 1000-L outdoor experimental ponds. Three hybrid (F1, backcrossj [B1], backcross2 [B2]) and two parental (R. blairi [BB] and R. sphenocephala [SS]) larval genotypes were produced by artificial fertilzations using adult frogs from a natural population in central Missouri. Resultant larvae were reared in single-genotype populations and two-way mixtures at equal total numbers from hatching to metamorphosis. In single-genotype ponds, F1 hybrid larvae had highest survival and BB were largest at metamorphosis. When F1 and SS larvae were mixed together, F1 hybrids had reduced survival and both F1 and SS larvae metamorphosed at larger body masses than when reared separately. When mixed, both B1 and SS larvae had shorter larval period lengths than when reared alone. Higher proportion of B1 metamorphs were produced when larvae were mixed with either parental species than when reared alone. Larval fitness components as measured by survival, body mass at metamorphosis, proportion of survivors metamorphosing, and larval period length for B2 hybrid and BB larvae were similar in single-genotype populations and mixtures. Comparison of composite fitness component estimates indicated hybrid genotypes possess equivalent or higher larval fitness relative to both parental species for the life-history fitness components measured. Despite reduced survival of F1 hybrids in mixtures, backcross-generation hybrid genotypes demonstrated high levels of larval growth, survival, and metamorphosis in mixtures with parental species. Consequently, this study suggests natural hybridization and subsequent backcrossing between R. blairi and R. sphenocephala can produce novel and relatively fit hybrid genotypes capable of successful existence with parental species larvae. Thus, the evolutionary fate of hybrid and parental genotypes in this system may be influenced by exogenous selection mediated by genotypic composition of larval assemblages.  相似文献   

19.
Preferred body temperatures (T sel) of ectotherms are important for ecological and evolutionary studies. In lizards, the measurement of T sel is controversial for several reasons, generally related to hypotheses addressing how T sel may evolve in the wild. Although seldom explicitly tested, evolutionary hypotheses of adaptation to local climate require that T sel meets the conditions of natural selection, which include repeatability, heritability and a link to fitness. Here, we investigated repeatability (τ, intra-class correlation coefficient) of T sel at several time-scales using four Cordylid species from heterogeneous thermal habitats. Although there was significant inter-individual variation within days (P < 0.005 in most cases), there was no significant inter-individual variation when calculated across several days (P > 0.05). Repeatability was low in all species investigated (from 0 to 0.482) when compared against other estimates of repeatability of T sel in the literature. Irrespective of how T sel was calculated, it showed inconsistent and variable temporal effects across species. Furthermore, repeatability of T sel did not change with acclimation to laboratory conditions. These data have implications for understanding the evolution of thermoregulation in these and other ectotherms.  相似文献   

20.
The additive genetic variation (VA) of fitness in a population is of particular importance to quantify its adaptive potential and predict its response to rapid environmental change. Recent statistical advances in quantitative genetics and the use of new molecular tools have fostered great interest in estimating fitness VA in wild populations. However, the value of VA for fitness in predicting evolutionary changes over several generations remains mostly unknown. In our study, we addressed this question by combining classical quantitative genetics with experimental evolution in the model organism Tribolium castaneum (red flour beetle) in three new environmental conditions (Dry, Hot, Hot-Dry). We tested for potential constraints that might limit adaptation, including environmental and sex genetic antagonisms captured by negative genetic covariance between environments and female and male fitness, respectively. Observed fitness changes after 20 generations mainly matched our predictions. Given that body size is commonly used as a proxy for fitness, we also tested how this trait and its genetic variance (including nonadditive genetic variance) were impacted by environmental stress. In both traits, genetic variances were sex and condition dependent, but they differed in their variance composition, cross-sex and cross-environment genetic covariances, as well as in the environmental impact on VA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号