首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the earth's climate has warmed, many tropical species have expanded their ranges poleward and encountered high‐latitude seasonal temperature regimes, in which further permanent expansion is limited by physiological vulnerability to cold temperatures. The barnacle Megabalanus coccopoma is native to shorelines from Baja California to Peru and has been introduced to many locations worldwide, including the southeastern USA. The ability of larvae to develop successfully at local temperatures can be an important factor limiting the spread of invasive species. To determine if cold temperatures limited larval success near the northern range limit of M. coccopoma along the Atlantic southeastern USA coast, we measured lower temperature limits to larval development, examined the effects of temperature on larval growth and energy accumulation, and calculated a larval energy budget to estimate the extent of potential larval dispersal in this region. Larvae were able to develop through metamorphosis at 16°C, which is much colder than sea surface temperatures during the spawning season in their invasive range, making it unlikely northern range limits are set by a lower temperature limit to larval development. Energy budgets suggest that for larvae produced at the northern end of the invasive range, long distance dispersal to sites far poleward of the current range limit is possible. Similar to the findings of the handful of other studies on cold tolerances of tropical marine invertebrate larvae, larvae should be successful far poleward of current adult distributions.  相似文献   

2.
Morphological, behavioural and biochemical characters of 9 cosmopolitan, benthic species of the nemertean genus Lineus are used both to clarify their taxonomy and to discuss their phylogenetic relationships. Data analysis shows that all fissiparous species of Lineus collected in the world seas up to date can be placed in a single species, L. sanguineus, with three recognisable subspecies, L. s. sanguineus, L. s. nigricans and L. s. pseudolacteus. These taxa were originally described as separate species mainly according to their geographic origin under the names L. sanguineus (shores of European seas), L. socialis (Atlantic North American shores), L. vegetus (Pacific North American shores), L. pseudolacteus (shores of the English Channel) and L. nigricans (Mediterranean coasts of Italy and France). Examination of the character value matrix suggests a phylogenetic tree developing from two ancestral branches. The first branch includes the two related species L. ruber and L. viridis, the second branch the three species L. longissimus, L. lacteus and L. sanguineus. This approach to the taxonomic and phylogenetic relationships of Lineus nemertean species is in agreement with the intra- and interspecies histocompatibility data in nemerteans: (i) grafts transplanted from donors to recipients of the same species succeed and grafts transplanted from donors to recipients of different species fail; (ii) grafts are rejected more rapidly when the donor and recipient species diverged earlier in evolution and, a contrario, grafts are accepted better when the donor and recipient species have been more recently isolated.  相似文献   

3.
The common ragweed (Ambrosia artemisiifolia L.; Asteraceae) is a North American native that is invading Eurasia. Besides its economic impact on crop yield, it presents a major health problem because of its highly allergenic pollen. The plant was imported inadvertently to Europe in the eighteenth century and has become invasive in several countries. By analyzing French and North American populations, it was previously shown that French populations were best described as a mixture of native sources and that range expansion in France probably involved sequential bottlenecks. Here, our aim was to determine whether Eastern European populations of A. artemisiifolia originated from the previously established French populations or from independent trans-Atlantic colonization events. We used nuclear microsatellite markers to elucidate the relationships among populations from Eastern and Western Europe in relation to populations from a broad survey across the native North American range. We found that A. artemisiifolia from Eastern Europe did not originate from the earlier established French populations but rather represents multiple independent introductions from other sources, or introductions from a not yet identified highly diverse native population. Eastern European populations show comparable amounts of genetic variability as do previously characterized French and North American populations, but analyses of population structure clearly distinguish the two European groups. This suggests separate introductions in Eastern and Western Europe as well as divergent sources for these two invasions, possibly as a result of distinct rules for trade and exchange for Eastern Europe during most of the twentieth century.  相似文献   

4.
Hemigrapsus sanguineus is an invasive species of crab (family: Grapsidae) in the north Atlantic basin. The species has spread rapidly since it was first discovered in North America in the late 1980s; however, the mechanisms of this range expansion remain unclear. This study attempts to predict the vertical distribution and, thus, ultimate transport of H. sanguineus larvae by examining larval responses to gravity and pressure. Geotaxis was determined by measuring the response of individual larvae to gravity in the absence of other tactic stimuli. Barokinesis was determined by measuring changes in swimming speed of larvae upon step-wise changes in pressure. Geotactic response of the larvae changes ontogenetically; early stage larvae are negatively geotactic (orienting towards the surface), while late stage larvae are positively geotactic (orienting towards the bottom). Larvae show a response to pressure that would aid in depth regulation. Early-stage larvae increase activity upon a change in pressure and orient their movement to gravity. However, the larvae show a relatively low sensitivity to pressure change. The evidence predicts an export-and-return model of larval transport, similar to that of Uca spp. in the Middle Atlantic Bight. This model supports the hypothesis that H. sanguineus larvae have the potential for high dispersal and will continue to invade new regions through larval transport.  相似文献   

5.
Understanding how the temperature sensitivity of phenology changes with three spatial dimensions (altitude, latitude, and longitude) is critical for the prediction of future phenological synchronization. Here we investigate the spatial pattern of temperature sensitivity of spring and autumn phenology with altitude, latitude, and longitude during 1982–2016 across mid‐ and high‐latitude Northern Hemisphere (north of 30°N). We find distinct spatial patterns of temperature sensitivity of spring phenology (hereafter “spring ST”) among altitudinal, latitudinal, and longitudinal gradient. Spring ST decreased with altitude mostly over eastern Europe, whereas the opposite occurs in eastern North America and the north China plain. Spring ST decreased with latitude mainly in the boreal regions of North America, temperate Eurasia, and the arid/semi‐arid regions of Central Asia. This distribution may be related to the increased temperature variance, decreased precipitation, and radiation with latitude. Compared to spring ST, the spatial pattern of temperature sensitivity of autumn phenology (hereafter “autumn ST”) is more heterogeneous, only showing a clear spatial pattern of autumn ST along the latitudinal gradient. Our results highlight the three‐dimensional view to understand the phenological response to climate change and provide new metrics for evaluating phenological models. Accordingly, establishing a dense, high‐quality three‐dimensional observation system of phenology data is necessary for enhancing our ability to both predict phenological changes under changing climatic conditions and to facilitate sustainable management of ecosystems.  相似文献   

6.
Leland Russell F  Louda SM 《Oecologia》2004,139(4):525-534
Phenological synchrony of a consumer population with its resource populations is expected to affect interaction intensity. We quantified phenological variation and synchrony of populations of an invasive Eurasian flower head weevil, Rhinocyllus conicus, that consumes florets, ovules, and seeds of developing flower heads of a native North American thistle, Cirsium canescens, in Sand Hills prairie in Nebraska, USA. Variation in timing of adult activity among weevil populations was larger than variation in timing of flower head development among C. canescens populations, and it drove the observed variation in the phenological synchrony between weevil and host plant populations. Furthermore, the degree of phenological synchrony between populations was significant in explaining variation in weevil egg load on the newly acquired host plant. Because population growth of C. canescens is limited by predispersal seed losses to floral herbivores, variation in the synchrony of herbivore and plant flowering will affect the density of the plant population. These results provide strong quantitative support for the hypothesis that the synchrony of insect activity with plant resources can determine the magnitude of impact of floral herbivores on their host plant populations.  相似文献   

7.
The Asian longhorned beetle, (Coleoptera, Cerambycidae, Anoplophora glabripennis (Motschulsky)), is endemic to China and Korea and an important invasive insect in North America and Europe. We analyzed mitochondrial DNA sequence data of invasive populations of A. glabripennis in North America and Europe, and microsatellite allele frequency data of beetles from North America. We show that populations in New York City and Long Island NY; New Jersey, Chicago, IL, and Toronto, Canada have limited genetic diversity compared to populations in China. In addition, the data suggest that separate introduction events were responsible for many of the populations in North America and for European populations in Austria, France, Germany and Italy. Populations on Long Island, NY are suspected to have been initiated by the transport of cut wood from New York City. A. glabripennis beetles found in Jersey City, NJ appear to be derived from an expansion of the New York City, NY population, whereas beetles found in Linden, NJ are an expansion from the Carteret, NJ population. Limited genetic diversity did not stop this invasive insect from establishing damaging populations in North America. Founders of introduced A. glabripennis populations in North America and Europe are likely derived from populations in China that are themselves invasive, rendering difficult the identification of source populations. Invasiveness in an insect’s natural range could be an important predictor of potential pest status of introduced populations.  相似文献   

8.
The quagga mussel Dreissena rostriformis bugensis, native to the Dnieper and the northern Black Sea, has become a major invasive species in both the Volga River and the North American Great Lakes since the early 1990s. Findings in the Netherlands (2006) and Germany (2007) mark the start of its establishment in Western Europe. We investigated the current distribution, time of first arrival and population structure of D. rostriformis bugensis from the rivers Rhine, Main and in the Main-Danube canal in Germany. Two putative sources of the German populations were analysed by genetically comparing these populations to older invasive populations from North America and the southeast Danube. Dreissena rostriformis bugensis was abundant in the Main and in three Rhine harbours, but rare in the actual Rhine river and absent south of the Main-Danube canal. Mussels found in the Rhine harbours were significantly smaller than in the Main. Population genetic analyses found no sign of founder effects and minimal differentiation between German, North American and southeast Danube populations. The genetic data suggest that these invasive populations derive from a common and rapidly expanding source. Based on the non-continuous distribution and shell size differences of Rhine harbour and Main populations, our results indicate that expansion in Germany involved at least two independent settling events, one of which happened before 2005, and most likely was caused by jump dispersal.  相似文献   

9.
Discerning patterns of post‐establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. The globally invasive colonial hydrozoan Cordylophora produces propagules both sexually and vegetatively and is associated with multiple potential dispersal mechanisms, making it a promising system to investigate complex patterns of population structure generated throughout the course of rapid range expansion. Here, we explore genetic patterns associated with the spread of this taxon within the North American Great Lakes basin. We collected intensively from eight harbours in the Chicago area in order to conduct detailed investigation of local population expansion. In addition, we collected from Lakes Michigan, Erie, and Ontario, as well as Lake Cayuga in the Finger Lakes of upstate New York in order to assess genetic structure on a regional scale. Based on data from eight highly polymorphic microsatellite loci we examined the spatial extent of clonal genotypes, assessed levels of neutral genetic diversity, and explored patterns of migration and dispersal at multiple spatial scales through assessment of population level genetic differentiation (pairwise FST and factorial correspondence analysis), Bayesian inference of population structure, and assignment tests on individual genotypes. Results of these analyses indicate that Cordylophora populations in this region spread predominantly through sexually produced propagules, and that while limited natural larval dispersal can drive expansion locally, regional expansion likely relies on anthropogenic dispersal vectors.  相似文献   

10.
Rickettsia conorii, the etiologic agent of Mediterranean spotted fever is widely distributed in Southern Europe, the Middle East, Africa, India and the Caspian region. In the Mediterranean region, the brown dog tick, Rhipicephalus sanguineus, is the recognized vector of R. conorii. To study tick-pathogen relationships and pathogenesis of infection caused in model animals by the bite of an infected tick, we attempted to establish a laboratory colony of Rh. sanguineus persistently infected with R. conorii. Rhipicephalus sanguineus ticks of North American and Mediterranean origin were exposed to R. conorii isolates of African (R. conorii conorii strain Malish) and Mediterranean (R. conorii israelensis strain ISTT) origin. Feeding of ticks upon infected mice and dogs, intra-hemocoel inoculation, and submersion in suspensions of purified rickettsiae were used to introduce the pathogen into uninfected ticks. Feeding success, molting success and the longevity of molted ticks were measured to assess the effects of R. conorii on the survival of Rh. sanguineus. In concordance with previously published results, Rh. sanguineus larvae and nymphs from both North American and Mediterranean colonies exposed to R. conorii conorii Malish experienced high mortality during feeding and molting or immediately after. The prevalence of infection in surviving ticks did not exceed 5%. On the other hand, exposure to ISTT strain had lesser effect on tick survival and resulted in 35–66% prevalence of infection. Rh. sanguineus of Mediterranean origin were more susceptible to infection with either strain of R. conorii than those from North America. Previous experimental studies had demonstrated transovarial and transstadial transmission of R. conorii in Rh. sanguineus; however, our data suggest that different strains of R. conorii may employ different means of maintenance in nature. The vertebrate host may be a more important reservoir than previously thought, or co-feeding transmission between different generations of ticks may obviate or lessen the requirement for transovarial maintenance of R. conorii.  相似文献   

11.
Rhithropanopeus harrisii (Gould 1841) has a native distribution from New Brunswick (Canada) to Veracruz (Mexico) and is considered an invasive species in northwestern North American (Oregon and California), South American (Brazil) and European estuaries and rivers. In Europe, it was observed for the first time in 1874, in The Netherlands. We sequenced and analyzed part of the cytochrome oxidase subunit I gene (mitochondrial DNA) of eight populations, three from the east coast of the United States of America (USA) and five from Europe, in order to assess their genetic diversity and to determine a potential founder population. European populations are characterized by a lower number of haplotypes than the whole native region of the eastern USA, suggesting that genetic bottlenecks occurred during the European colonisation. Along the North American East Coast, there is evidence of clearcut genetic heterogeneity, New Jersey being the most similar population in its genetic structure to the postulated Europe-founding population. Also the different European populations are heterogeneous and there is a tendency of higher genetic diversity in the populations founded earlier. R. harrisii is still in the process of expansion in Europe and may have been introduced once or repeatedly by different invasion mechanisms. The pronounced lack of gene flow among populations is of great ecological significance, since it may facilitate rapid adaptation and specialization to local conditions within single estuarine systems.  相似文献   

12.
To predict changes in species' distributions due to climate change we must understand populations at the poleward edge of species' ranges. Ecologists generally expect range shifts under climate change caused by the expansion of edge populations as peripheral conditions increasingly resemble the range core. We tested whether peripheral populations of two contrasting butterflies, a small-bodied specialist (Erynnis propertius) and a large-bodied generalist (Papilio zelicaon), respond favorably to warmer conditions. Performance of populations related to climate was evaluated in seven peripheral populations spanning 1.2 degrees latitude (160 km) using: (1) population density surveys, an indirect measure of site suitability; and (2) organismal fitness in translocation experiments. There was evidence that population density increased with temperature for P. zelicaon whose population density declined with latitude in 1 of 3 sample years. On the other hand, E. propertius showed a positive relationship of population density with latitude, apparently unrelated to climate or measured habitat variables. Translocation experiments showed increased larval production at increased temperatures for both species, and in P. zelicaon, larval production also increased under drier conditions. These findings suggest that both species may increase at their range edge with warming but the preference for core-like conditions may be stronger in P. zelicaon. Further, populations of E. propertius at the range boundary may be large enough to act as sources of colonists for range expansions, but range expansion in this species may be prevented by a lack of available host plants further north. In total, the species appear to respond differently to climate and other factors that vary latitudinally, factors that will likely affect poleward expansion.  相似文献   

13.
Previous studies have suggested that bird populations in east Asia were less affected by Pleistocene climatic fluctuations than those in Europe and North America. However, this is mainly based on comparisons among species. It would be more relevant to analyse geographical populations of widespread species or species complexes. We analyzed two mitochondrial genes and two nuclear introns for all taxa of Pica to investigate 1) which Earth history factors have shaped the lineage divergence, and 2) whether different geographical populations were differently affected by the Pleistocene climatic changes. Our mitochondrial tree recovered three widespread lineages, 1) in east Asia, 2) across north Eurasia, and 3) in North America, respectively, with three isolated lineages in northwest Africa, Arabia and the Qinghai‐Tibet Plateau, respectively. Divergences among lineages took place 1.4–3.1 million yr ago. The northwest African population was sister to the others, which formed two main clades. In one of these, Arabia was sister to Qinghai‐Tibet, and these formed the sister clade to the east Asia clade. The other main clade comprised the North American and north Eurasian clades. There was no or very slight structure within these six geographical clades, including a lack of differentiation between the two North American species black‐billed magpie P. hudsonia and yellow‐billed magpie P. nutalli. Demographic expansion was recorded in the three most widespread lineages after 0.06 Ma. Asymmetric gene flow was recorded in the north Eurasian clade from southwestern Europe eastward, whereas the east Asian clade was rooted in south central China. Our results indicate that the fragmentation of the six clades of Pica was related to climatic cooling and aridification during periods of the Pliocene–Pleistocene. Populations on both sides of the Eurasian continent were similarly influenced by the Pleistocene climate changes and expanded concomitantly with the expansion of steppes. Based on results we also propose a revised taxonomy recognising seven species of Pica.  相似文献   

14.
Aim The tunicate Molgula manhattensis has a disjunct amphi‐Atlantic distribution and a recent history of world‐wide introductions. Its distribution could be the result of regional extinctions followed by post‐glacial recolonization, or anthropogenic dispersal. To determine whether the North Atlantic distribution of M. manhattensis is natural or human‐mediated, we analysed mtDNA cytochrome c oxidase subunit I (COI) sequence variation in individuals from cryptogenic and introduced ranges. Location North Atlantic Europe and America; Black Sea; San Francisco Bay; Osaka Bay. Methods Nuclear 18S rDNA sequences were used to resolve phylogenetic relationships and mtDNA COI sequences for phylogeographic analyses. Results Phylogenetic analyses confirmed that M. manhattensis and M. socialis, which are frequently confused, are distinct species. MtDNA haplotype diversity was nearly three times higher with deeper relationships among haplotypes on the North‐east American coast than in Europe. Diversity declined from south to north in America but not in Europe. In areas of known introductions (Black Sea, Japan, San Francisco Bay), M. manhattensis showed variable levels of haplotype diversity. Medium‐to‐high‐frequency haplotypes originating from the North‐west Atlantic were present in two locations of known introductions, but not in Europe. Private haplotypes were found on both sides of the Atlantic and in introduced populations. The mismatch distribution for the North‐east Atlantic coast indicates a recent expansion. Main conclusions Molgula manhattensis is native in North‐east America. However, whether it was introduced or is native to Europe remains equivocal. Additional sampling might or might not reveal the presence of putative private European haplotypes in America. The low European diversity may be explained by low effective population size and a recent expansion, or by low propagule pressure of anthropogenic introduction. Absence of medium‐to‐high‐frequency American haplotypes in Europe may be the result of exclusive transport from southern ports, or long‐term residence. These arguments are ambiguous, and M. manhattensis remains cryptogenic in Europe.  相似文献   

15.

Background  

Despite its key location between the rest of the continent and Europe, research on the phylogeography of north African species remains very limited compared to European and North American taxa. The Mediterranean land mollusc Cornu aspersum (= Helix aspersa) is part of the few species widely sampled in north Africa for biogeographical analysis. It then provides an excellent biological model to understand phylogeographical patterns across the Mediterranean basin, and to evaluate hypotheses of population differentiation. We investigated here the phylogeography of this land snail to reassess the evolutionary scenario we previously considered for explaining its scattered distribution in the western Mediterranean, and to help to resolve the question of the direction of its range expansion (from north Africa to Europe or vice versa). By analysing simultaneously individuals from 73 sites sampled in its putative native range, the present work provides the first broad-scale screening of mitochondrial variation (cyt b and 16S rRNA genes) of C. aspersum.  相似文献   

16.
Recent studies suggest that the invasive success of Centaurea maculosa may be related to its stronger allelopathic effects on native North American species than on related European species, one component of the “novel weapons” hypothesis. Other research indicates that C. maculosa plants from the invasive range in North America have evolved to be larger and better competitors than conspecifics from the native range in Europe, a component of the “evolution of increased competitive ability” hypothesis. These hypotheses are not mutually exclusive, but this evidence sets the stage for comparing the relative importance of evolved competitive ability to inherent competitive traits. In a competition experiment with a large number of C. maculosa populations, we found no difference in the competitive effects of C. maculosa plants from North America and Europe on other species. However, both North American and European C. maculosa were much better competitors against plants native to North America than congeners native to Romania, collected in areas where C. maculosa is also native. These results are consistent with the novel weapons hypothesis. But, in a second experiment using just one population from North America and Europe, and where North American and European species were collected from a broader range of sites, competitive interactions were weaker overall, and the competitive effects of C. maculosa were slightly stronger against European species than against North American species. Also consistent with the novel weapons hypothesis, (±)-catechin had stronger effects on native North American species than on native European species in two experiments. Our results suggest that the regional composition of the plant communities being invaded by C. maculosa may be more important for invasive success than the evolution of increased size and competitive ability. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Accurate models for species' distributions are needed to forecast the progress and impacts of alien invasive species and assess potential range‐shifting driven by global change. Although this has traditionally been achieved through data‐driven correlative modelling, robustly extrapolating these models into novel climatic conditions is challenging. Recently, a small number of process‐based or mechanistic distribution models have been developed to complement the correlative approaches. However, tests of these models are lacking, and there are very few process‐based models for invasive species. We develop a method for estimating the range of a globally invasive species, common ragweed (Ambrosia artemisiifolia L.), from a temperature‐ and photoperiod‐driven phenology model. The model predicts the region in which ragweed can reach reproductive maturity before frost kills the adult plants in autumn. This aligns well with the poleward and high‐elevation range limits in its native North America and in invaded Europe, clearly showing that phenological constraints determine the cold range margins of the species. Importantly, this is a ‘forward’ prediction made entirely independently of the distribution data. Therefore, it allows a confident and biologically informed forecasting of further invasion and range shifting driven by climate change. For ragweed, such forecasts are extremely important as the species is a serious crop weed and its airborne pollen is a major cause of allergy and asthma in humans. Our results show that phenology can be a key determinant of species' range margins, so integrating phenology into species distribution models offers great potential for the mechanistic modelling of range dynamics.  相似文献   

18.
Biologic invasions can have important ecological, economic and social consequences, particularly when they involve the introduction and spread of plant invasive pathogens, as they can threaten natural ecosystems and jeopardize the production of human food. Examples include the grapevine downy mildew, caused by the oomycete Plasmopara viticola, an invasive species native to North America, introduced into Europe in the 1870s. We investigated the introduction and spread of this invasive pathogen, by analysing its genetic structure and diversity in a large sample from European vineyards. Populations of P. viticola across Europe displayed little genetic diversity, consistent with the occurrence of a bottleneck at the time of introduction. Bayesian coalescent analyses revealed a clear population expansion signal in the genetic data. We detected a weak, but significant, continental‐wide population structure, with two geographically and genetically distinct clusters in Western and Eastern European vineyards. Approximate Bayesian computation, analyses of clines of genetic diversity and of isolation‐by‐distance patterns provided evidence for a wave of colonization moving in an easterly direction across Europe. This is consistent with historical reports, first mentioning the introduction of the disease in Bordeaux vineyards (France) and sub‐sequently documenting its rapid spread across Europe. This initial introduction in the west was probably followed by a ‘leap‐frog’ event into Eastern Europe, leading to the formation of the two genetic clusters we detected. This study shows that recent population genetics methods within the Bayesian and coalescence frameworks are extremely powerful for increasing our understanding of pathogen population dynamics and invasion histories.  相似文献   

19.
The European green crab, Carcinus maenas, was first documented in San Francisco Bay in 1989, and has since spread north along the west coast of North America. The spread of this invasion has not been a smooth expansion, which has raised questions about the underlying causes of variation in recruitment. We modeled larval development and transport along the West Coast by employing an individual-based model that incorporated oceanographic model output of water temperature and ocean currents at fine spatial and temporal scales. The distance that larvae were advected depended primarily on the timing of larval release. However, the effect of seasonal ocean currents varied across latitude and years. Our results imply that the furthest northern transport from California occurs when larvae are released from Humboldt Bay during the fall of an El Niño year, making this a particularly risky time for invasion to Oregon and Washington estuaries. To precisely predict future spread and potential impacts of green crab, we recommend further empirical research to determine the precise timing of larval release and seasonal abundance of green crab larvae from North American west coast populations.  相似文献   

20.
Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号