首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Anderson CB  Rosemond AD 《Oecologia》2007,154(1):141-153
Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of macroinvertebrate biomass (positive) were inversely related. Thus, while a generally positive relationship between diversity and ecosystem function has been found in a variety of systems, this work shows how they can be decoupled by responding to alterative mechanisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
North American beavers (Castor canadensis) were introduced to Tierra del Fuego Island in 1946 for their fur, and have since spread across the archipelago and onto the South American mainland. We assessed the impact of invasive beavers on streams of these forested watersheds by quantifying the trophic basis of production (TBP) and consumptive organic matter flows of benthic macroinvertebrate assemblages. TBP was determined in two streams: clear- and black-water. Stable isotopes were used across four streams to further elucidate food web structure and dominant pathways. TBP and stable isotopes showed that terrestrially derived organic matter (amorphous detritus, leaves, and wood) supported a majority of secondary production in the benthic food webs at all sites (forested reaches, beaver ponds, and sections downstream of ponds with foraged riparian zones). The magnitude of these flows was enhanced in beaver-modified sites compared with forested habitats (4.0–5.3× increase g AFDM m−2 year−1 in pond habitats, 1.1–2.1× increase in downstream habitats). Diatoms were the only autochthonous resource identified in macroinvertebrate guts, but their contribution to secondary production was small. Consumptive flows mirrored trends in TBP (i.e., dominance of terrestrial sources and greater magnitude in beaver ponds). Collector–gatherer consumption of amorphous detrital material dominated food web flows in all habitats, but was higher in beaver ponds relative to other habitats. Food web structure was simplified in beaver ponds; only two of the five possible functional groups contributed >1% of total organic matter flow in ponds (collector–gatherers and predators). Consumptive flows to predators increased in ponds, and stable isotopes of nitrogen and carbon (δ15N and δ13C) corroborated a relatively greater importance of predators (greater trophic distance), as well as less diversity of basal resources (less variation in δ13C) in ponds. Our findings indicate that invasive beaver’s engineering activities resulted in greater flows of terrestrial organic matter subsidies to in-stream food webs, which had a relatively greater change in the clear-water than in the black-water stream. Owing to the fact that these streams were naturally dependent on allochthonous resources for a majority of production and material flows, changes wrought by beavers to streams in forested environments are probably less than in watersheds with inherently greater dependence on autochthonous production such as the adjacent steppe biome.  相似文献   

3.
The North American beaver (Castor canadensis) builds dams that pond water on streams, which provide crucial ecological services to aquatic and riparian ecosystems and enhance biodiversity. Consequently, there is increasing interest in restoring beavers to locations where they historically occurred, particularly in the arid western United States. However, despite often intensive efforts to reintroduce beavers into areas where they were severely reduced in numbers or eliminated due to overharvesting in the eighteenth and nineteenth centuries, beavers remain sparse or missing from many stream reaches. Reasons for this failure have not been well studied. Our goal was to evaluate certain biotic factors that may limit the occurrence of dam‐building beavers in northern New Mexico, including competitors and availability of summer and winter forage. We compared these factors at primary active dams and at control sites located in stream reaches that were physically suitable for dam‐building beavers but where none occurred. Beaver dams mostly occurred at sites that were not grazed or where there was some alternative grazing management, but were mostly absent at sites within Forest Service cattle allotments. Results indicated that cattle grazing influenced the relation between vegetation variables and beaver presence. The availability of willows (Salix spp.) was the most important plant variable for the presence of beaver dams. We conclude that grazing by cattle as currently practiced on Forest Service allotments disrupts the beaver‐willow mutualism, rendering stream reaches unsuitable for dam‐building beavers. We recommend that beaver restoration will require changes to current livestock management practices.  相似文献   

4.
The extent and ecological significance of trophic linkages across ecosystem boundaries have been the subject of considerable recent research attention. North American beavers Castor canadensis engineer terrestrial influences in aquatic ecosystems by constructing terrestrial food caches near their lodges and aquatic influences in terrestrial ecosystems by building dams and flooding low lying areas. However, it is poorly resolved to what extent beavers rely on aquatic food sources and whether this reliance is greater during winter when ice cover physically confines beavers to aquatic habitats or during summer when warm, ice free water promotes the growth and accessibility of aquatic vegetation. Working in a subarctic region, we surveyed the abundance of aquatic and terrestrial food sources in and around lotic and lentic environments and estimated their contributions to beaver diets during open water and ice covered periods using carbon and nitrogen stable isotope analysis of hair samples. Ponds had four times more aquatic vegetation than streams, but terrestrial habitats around ponds had less than half as much shrub cover as habitats adjacent to streams. Beaver diets in this subarctic environment are estimated to be comprised of 60 to 80% aquatic vegetation, with beavers occupying ponds consuming more aquatic vegetation in winter than beavers occupying streams, which rely more on terrestrial shrubs cached near their lodge. Collectively, these results show how the influence of physical barriers on ecosystem linkages can be modified by habitat‐ and season‐specific abundances of preferred resources and the potential for animals to consume food in ecosystems and seasons different from where and when the food was harvested.  相似文献   

5.
Our aim was to determine how beavers affect habitats and food resources for juvenile salmon in the Kwethluk River in western Alaska.
    相似文献   

6.
7.
Our study found that beaver activity affects macroinvertebrate assemblages of both beaver ponds and downstream sites. The percentage composition of the invertebrate faunae of beaver ponds was strikingly different from the invertebrate faunae of upstream forested and downstream sites. The number of EPT (ephemeropteran, plecopteran, trichopteran) taxa in the upstream forested sites in all streams was higher than in beaver pond and downstream sites. Statistically significant differences were found in absolute and relative abundances of EPT and Chironomidae between different streams sites. The absolute and relative abundance of pollution-sensitive EPT was significantly higher in forested sites than in beaver pond and downstream sites in all measured streams. Beaver ponds had a significantly higher absolute and relative abundance of Chironomidae compared with upstream forested and downstream sites. We found that Plecoptera and Coleoptera were absent from beaver pond sites. The absolute abundance of Plecoptera was significantly higher in upstream forested sites than in downstream sites in all three streams. Gatherers were the dominant functional feeding group in relative abundance in all three habitat types. The percentage of gatherers was higher in beaver ponds than in forested and downstream sites.  相似文献   

8.
Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.  相似文献   

9.
10.
  • 1 Twenty‐five pairs of North American beavers Castor canadensis Kuhl were introduced to Tierra del Fuego Island in 1946. The population has expanded across the archipelago, arriving at the Chilean mainland by the mid‐1990s. Densities range principally between 0.5–2.05 colonies/km. They have an impact on between 30–50% of stream length and occupy 2–15% of landscape area with impoundments and meadows. Beaver impacts constitute the largest landscape‐level alteration in subantarctic forests since the last ice age.
  • 2 The colonization pattern, colony densities and impacted area indicate that habitat in the austral archipelago is optimal for beaver invasion, due to low predator pressure and suitable food resources. Nothofagus pumilio forests are particularly appropriate habitat, but a more recent invasion is occurring in adjacent steppe ecosystems. Nonetheless, Nothofagus reproductive strategies are not well adapted to sustain high beaver population levels.
  • 3 Our assessment shows that at the patch‐scale in stream and riparian ecosystems, the direction and magnitude of exotic beaver impacts are predictable from expectations derived from North American studies, relating ecosystem engineering with underlying ecological mechanisms such as the relationships of habitat heterogeneity and productivity on species richness and ecosystem function.
  • 4 Based on data from the species' native and exotic range, our ability to predict the effects of beavers is based on: (i) understanding the ecological relationships of its engineering effects on habitat, trophic dynamics and disturbance regimes, and (ii) having an adequate comprehension of the landscape context and natural history of the ecosystem being engineered.
  • 5 We conclude that beaver eradication strategies and subsequent ecosystem restoration efforts, currently being considered in southern Chile and Argentina, should focus on the ecology of native ecosystems rather than the biology of this invasive species per se. Furthermore, given the nature of the subantarctic landscape, streams will probably respond to restoration efforts more quickly than riparian ecosystems.
  相似文献   

11.
Bat populations are declining in many areas, partly because up to two-thirds of their wetland habitats have been lost. One natural agent creating wetlands is the beaver, which is recolonizing its former range. Beaver flowages are known for their high production of aquatic invertebrates. We tested the hypothesis that the high numbers of insects emerging from beaver flowages influences their use by foraging bats. We compared bat use and bat numbers above flowages of introduced Canadian beavers Castor canadensis and in nearby control ponds where beavers were absent. The two bat species detected, Eptesicus nilssoni and Myotis daubentoni, used beaver flowages more than non-beaver ponds. This is especially the case for Eptesicus nilssoni. Bats also seemed to forage in larger groups while above beaver ponds compared to the control ponds. Beaver flowages appeared to improve bat habitats. A plausible reason for this could be the high number of insects emerging from beaver ponds. Favouring the beaver in habitat management is a tool for creating suitable conditions for many other species, such as bats. In areas not suited for the beaver, insect production can be achieved by imitating the beaver with man-made impoundments. This is especially important in areas which have lost most of their wetlands.  相似文献   

12.
13.
14.
1. The North American beaver has been studied as a model ecosystem engineer for many decades. Previous studies have documented physical, chemical and biological impacts attributed to beaver engineering in both aquatic and terrestrial environments. This study focused on the effects of ecosystem engineering by beavers on life histories of a common mayfly and on the potential consequences for mayfly populations. 2. We studied 18 montane beaver ponds of varying size and shape in western Colorado near the Rocky Mountain Biological Laboratory. Our goal was to test whether variation in beaver pond morphology (pond size and shape) explains downstream changes in stream temperature, mayfly size and timing of emergence. 3. Downstream water temperatures varied predictably with pond morphology, being colder downstream of high‐head dams and warmer downstream of low‐head dams. Pond morphology was also a significant predictor of variation in the size of mature female Baetis bicaudatus (the most abundant mayfly), with larger females emerging downstream of high‐head dams and smaller females downstream of low‐head dams. The size of male B. bicaudatus was not significantly related to pond morphology or stream temperature. There was no relationship between pond morphology and variation in the timing of emergence of Baetis (males or females) between upstream and downstream reaches. 4. Our results have implications for the effects of beaver ponds on Baetis individual fitness because large Baetis females are more fecund. Therefore, predictable female size variation associated with beaver pond morphology makes it possible to model the effects of beaver activity on local contributions of Baetis to the regional pool of reproductive adults at the catchment scale. Additionally, predictable changes in the size of emerging mayflies may have important consequences for the magnitude of aquatic to terrestrial resource subsidies in beaver‐modified systems.  相似文献   

15.
Beaver (Caster canadensis) foraging and edaphic conditions can modify the vegetational characteristics of woody plant community in lowland boreal forests. Effective management of these areas requires an understanding of the relative contribution of these factors in shaping the woody plant community structure. Our objective was to quantify the effects of herbivory by beavers and edaphic conditions on woody plant community organization of lowland boreal forests surrounding beaver ponds. Woody vegetation and soils were sampled at 15 ponds occupied by beavers and one other pond abandoned by them in southern Algonquin Park, Ontario. We measured spatial variation in plant diversity, foraging rates and sapling recruitment of trees and shrubs along gradients of beaver foraging intensity and soil moisture, P, K, Mg, and pH. Beavers fed preferentially on a small number of deciduous species and the number of cut stems declined sharply with increasing distance from ponds. Conifers increased in relative dominance to deciduous species in the presence of beavers. Plant species richness and stem and basal area diversity peaked at intermediate distances (about 25 m) from ponds. Sapling recruitment by non-preferred species was positively related to foraging intensity. Total stem abundance and basal area and sapling recruitment by four preferred species (Populus tremuloides, Acer rubrum, Acer saccharum and Corylus cornuta) were negatively related to foraging intensity. However, by including Alnus rugosa and Salix bebbiana (also preferred by beavers) these patterns changed, becoming positively related to foraging intensity. There was also a pronounced gradient in soil moisture, which also decreased with distance from ponds. The other measured edaphic variables did not vary consistently with distance from ponds. Sapling recruitment in mesic versus xeric species varied consistently with hydrid conditions along the moisture gradient, such that variation in moisture also could produce the observed pattern of plant diversity. Diversity patterns changed three years after beaver abandonment of a pond, though sapling recruitment patterns in preferred and non-preferred species around the abandoned pond were similar to the occupied ponds. These observations suggest spatial variation in woody plant richness and diversity could be determined by combined effects of both herbivory (disturbance by beavers) and variable responses of different species to edaphic conditions.  相似文献   

16.
  1. Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
  2. Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in-stream predators such as fishes.
  3. We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
  4. Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.
  5. There was an increase over time in algal biomass (chlorophyll-a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.
  6. Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
  相似文献   

17.
  • 1 The Eurasian beaver Castor fiber suffered a drastic reduction in both geographical range and population size, due to human persecution, until the end of the 19th century. After the adoption of protection measures, natural expansion and reintroductions led to the recovery of this species over much of its European range.
  • 2 We review historical events that led to the recovery of beavers in France, and summarize the status of beavers in various river systems. Beaver establishment in France is a story of overall success: several major river systems are presently occupied, so that the species is no longer at risk in France.
  • 3 However, beaver recolonization took place in parallel with increasing human impacts on the environment. In addition to natural limiting factors, anthropogenic factors impeded beaver settlement in many areas. Today, beavers often occupy suboptimal habitats and, as a consequence, come into conflict with human activities. Effective solutions for preventing beaver damage include the restoration of riparian habitats to discourage crop damage and the provision of physical barriers to protect crops.
  • 4 Beaver populations reintroduced into France all originate from the relict Rhône population. However, in recent years, beavers from populations in neighbouring countries have been expanding into north‐eastern France. Therefore, our review of beaver origin and distribution in these countries may contribute to the development of appropriate national management strategies and towards important decisions, e.g. the decision to try to keep Rhône beavers genetically isolated, or to allow populations to mix.
  • 5 The recently discovered presence of North American beavers Castor canadensis in three countries surrounding France has raised an important issue. This species may out‐compete C. fiber in places where the species come into contact. A programme based on field‐trapping sessions and genetic analyses has recently been initiated in some western countries in order to eradicate this non‐native species.
  相似文献   

18.
  1. Temperate headwater streams traditionally have been considered heterotrophic and brown food web dominated with little primary production. Recent work, however, suggests algae on leaves in these streams may play a greater role than previously thought through interactions with microbial decomposers like fungi. Algae also may be important for macroinvertebrates colonizing leaves in streams. Algae are a more nutritious food resource for shredders than fungi and bacteria and provide a food resource for non-shredder macroinvertebrates.
  2. In a field experiment, we manipulated light in three low-nutrient and three high-nutrient streams using leaf bags filled with red maple leaves in winter and spring. After four weeks we measured algal and fungal biomass, leaf stoichiometry, and macroinvertebrate abundance and biomass associated with the leaf bags. We also identified the macroinvertebrate community and examined differences in functional feeding guilds and taxa under ambient- and shaded-light treatments and low- and high-nutrient concentrations in relation to measured leaf characteristics.
  3. Algal biomass on leaves was greatest in high-nutrient streams and ambient-light treatments in both seasons. Fungal biomass on leaves was greatest in high-nutrient streams and showed a moderate marginally significant positive correlation with algae during the winter. Leaf C:N was negatively correlated to algae in winter and fungi in both seasons, while leaf N:P and C:P were negatively correlated to fungi in winter and algae in spring. Interactions between fungi and algae on leaves and the nutritional importance of each for macroinvertebrates likely change across seasons, potentially impacting macroinvertebrate community composition.
  4. Macroinvertebrate diversity did not differ, but biomass was significantly greater in shaded-light treatments during spring. Abundance was highest in the high-nutrient ambient-light conditions in both seasons, corresponding to greatest algal biomass. Functional feeding guild biomass and abundance were related to different leaf characteristics by season and guild. Higher algal biomass was an important factor for colonization of certain macroinvertebrates (e.g., Ephemerella (Ephemeroptera: Ephemerellidae) and Stenonema (Ephemeroptera: Heptageniidae)), while others were more abundant under shaded treatments with lower algal biomass (e.g., Tipula (Diptera: Tipulidae)), indicating taxa-specific responses.
  5. Leaf-associated algae may be an important factor mediating macroinvertebrate communities associated with leaves in temperate headwater streams. Our results demonstrate that green and brown food webs intersect within leaf packs, and they cannot be easily disentangled. We therefore should consider both autochthonous and allochthonous resources within headwater streams when examining their communities or developing water management strategies.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号