首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.  相似文献   

2.
Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef??s metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261?C370 OTUs) than in live coral substrates (112?C219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227?C320 OTUs) and the lowest estimated richness of 47?C115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.  相似文献   

3.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

4.
The largest marine biodiversity hotspot straddles the Indian and Pacific Oceans, driven by taxa associated with tropical coral reefs. Centred on the Indo‐Australian Archipelago (IAA), this biodiversity hotspot forms the ‘bullseye’ of a steep gradient in species richness from this centre to the periphery of the vast Indo‐Pacific region. Complex patterns of endemism, wide‐ranging species and assemblage differences have obscured our understanding of the genesis of this biodiversity pattern and its maintenance across two‐thirds of the world's oceans. But time‐calibrated molecular phylogenies coupled with ancestral biogeographic estimates have provided a valuable framework in which to examine the origins of coral reef fish biodiversity across the tropics. Herein, we examine phylogenetic and biogeographic data for coral reef fishes to highlight temporal patterns of marine endemism and tropical provinciality. The ages and distribution of endemic lineages have often been used to identify areas of species creation and demise in the marine tropics and discriminate among multiple hypotheses regarding the origins of biodiversity in the IAA. Despite a general under‐sampling of endemic fishes in phylogenetic studies, the majority of locations today contain a mixture of potential paleo‐ and neo‐endemic fishes, pointing to multiple historical processes involved in the origin and maintenance of the IAA biodiversity hotspot. Increased precision and sampling of geographic ranges for reef fishes has permitted the division of discrete realms, regions and provinces across the tropics. Yet, such metrics are only beginning to integrate phylogenetic relatedness and ancestral biogeography. Here, we integrate phylogenetic diversity with ancestral biogeographic estimation of lineages to show how assemblage structure and tropical provinciality has changed through time.  相似文献   

5.
Species richness is the most commonly used metric to quantify biodiversity. However, examining dark diversity, the group of missing species which can potentially inhabit a site, can provide a more thorough understanding of the processes influencing observed biodiversity and help evaluate the restoration potential of local habitats. So far, dark diversity has mainly been studied for specific habitats or large‐scale landscapes, while less attention has been given to variation across broad environmental gradients or as a result of local conditions and biotic interactions. In this study, we investigate the importance of local environmental conditions in determining dark diversity and observed richness in plant communities across broad environmental gradients. Using the ecospace concept, we investigate how these biodiversity measures relate to abiotic gradients (defined as position), availability of biotic resources (defined as expansion), spatiotemporal extent of habitats (defined as continuity), and species interactions through competition. Position variables were important for both observed diversity and dark diversity, some with quadratic relationships, for example, plant richness showing a unimodal response to soil fertility corresponding to the intermediate productivity hypothesis. Interspecific competition represented by community mean Grime C had a negative effect on plant species richness. Besides position‐related variables, organic carbon was the most important variable for dark diversity, indicating that in late‐succession habitats such as forests and shrubs, dark diversity is generally low. The importance of highly competitive species indicates that intermediate disturbance, such as grazing, may facilitate higher species richness and lower dark diversity.  相似文献   

6.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

7.
Aim Unique topographic features left the Red Sea and its north‐eastern extension into the Gulf of Aqaba practically devoid of coral‐reef‐based organisms during the last glacial maximum. The current ichthyofauna in these two ‘regions’ thus represents the product of relatively recent colonization by species found in the Arabian Sea, which adjoins the Red Sea at its southern tip. We used this system to test why some marine species seemingly fail to extend their geographic range, thereby generating spatial heterogeneity in biodiversity. Location The Arabian Sea, Red Sea, and the Gulf of Aqaba. Methods A list of coral‐reef‐associated fish species, belonging to the 10 most speciose families, was compiled for each region using published sources. The data were analysed (major axis regression, randomization tests) for taxonomic and body‐size‐dependent biases in colonization probabilities. A simple probabilistic model was used to examine the potential contribution of local (within‐region) extinctions to determining species composition in the Red Sea. Results Of the 462 reef‐associated species that inhabit the Arabian Sea, 69% have crossed successfully into the Red Sea; of these, 55% have crossed into the Gulf of Aqaba. A species’ probability of being found in either ‘target’ was independent of presumed innate differences, i.e. ecological correlates of taxonomic affiliation and body size. Similarly, local extinctions were found unlikely to have been of consequence over the past several thousand years. Main conclusions Present‐day differences in the species richness of reef‐associated fish species among the Arabian Sea, Red Sea and Gulf of Aqaba appear to be the product of external, non‐selective constraints on colonization. The random nature of the colonization process is suggestive of ecological redundancy among coral‐reef fish species. Importantly, the study places a time frame on the processes that determine spatial patterns of biodiversity in reef fish.  相似文献   

8.
A fundamental goal of ecology is to understand the factors that influence community structure and, consequently, generate heterogeneity in species richness across habitats. While niche‐assembly (e.g. species‐sorting) and dispersal‐assembly mechanisms are widely recognized as factors structuring communities, there remains substantial debate concerning the relative importance of each of these mechanisms. Using freshwater snails as a model system, we explore how abiotic and biotic factors interact with dispersal to structure local communities and generate regional patterns in species richness. Our data set consisted of 24 snail species from 43 ponds and lakes surveyed for seven years on the Univ. of Michigan's E. S. George Reserve and Pinckney State Recreation Area near Ann Arbor, Michigan. We found that heterogeneity in habitat conditions mediated species‐sorting mechanism to drive patterns in snail species richness across sites. In particular, physical environmental variables (i.e. habitat area, hydroperiod, and canopy cover), pH, and fish presence accounted for the majority of variation in the species richness across sites. We also found evidence of Gleasonian structure (i.e. significant species turnover with stochastic species loss) in the metacommunity. Turnover in snail species distributions was driven by the replacement of several pulmonate species with prosobranch species at the pond permanence transition. Turnover appeared to be driven by physiological constraints associated with differences in respiration mode between the snail orders and shell characteristics that deter molluscivorous fish. In contrast to these niche‐assembly mechanisms, there was no evidence that dispersal‐assembly mechanisms were structuring the communities. This suggests that niche‐assembly mechanisms are more important than dispersal‐assembly mechanisms for structuring local snail communities.  相似文献   

9.
Species richness is unevenly distributed on the Earth, with biodiversity gradients of various spatial scales supposedly being affected by abiotic as well as biotic factors including community traits such as body size spectra and relative abundance patterns. To explore large-scale spatial variation in species diversity and their processes, tidepool fish communities were investigated through an intensive field work conducted on 55 shore sites in south-western Japan. Multiple ecological measures were taken into account to assess changes in local community structures with changes in the number of species. Biomass (total fish wet weight) per unit area showed no systematic change with latitude, while taxa richness and number of individuals tended to increase toward lower latitudes. In addition, median fish body weight scaled positively with latitude, which was more conspicuous in Blenniidae than in Gobiidae. The latitudinal gradient of diversity in tidepool fish assemblages appears to be characterized by partitioning of total biomass that tends to stay constant across latitudes, suggesting the phenomenon of “biomass compensation” whereby body size and abundance/diversity change in opposite directions with latitude. Our study highlights that biomass compensation can be part of processes involved in generating gradients of species richness even without an apparent energy/resource gradient.  相似文献   

10.
The significance of biodiversity to biogeochemical cycling is viewed most directly through the specific biogeochemical transformations that organisms perform. Although functional diversity in soils can be great, it is exceeded to a high degree by the richness of soil species. It is generally inferred from this richness that soil systems have a high level of functional redundancy. As such, indices of species richness probably contribute little to understanding the functioning of soil ecosystems. Another approach stresses the value of identifying keystone organisms, that is those that play an exceptionally important role in determining the structure and function of ecosystems. Both views tend to ignore the importance of biodiversity in maintaining the numerous and complex interactions among organisms in soils and their contributions to biogeochemical cycling. We describe some of those interactions and their importance to ecosystem function.Soil organisms alter the physical, chemical and biological properties of soils in innumerable ways. The composition and structure of biotic communities at one hierarchical level can influence the spatial heterogeneity of resource and refuge patches at other hierarchical levels. This spatial heterogeneity is supported by a number of biologically relevant spheres of influence that include the detritusphere, the drilosphere, the porosphere, the aggregatusphere and the rhizosphere. Each has fairly distinct properties that operate at different spatial scales. We discuss how these properties may function in regulating the interactions among organisms and the biogeochemical processes that they mediate. It is through the formation of a spatially and temporally heterogeneous structure that biodiversity may contribute most significantly to the functioning of soil ecosystems. Real advances in understanding the significance of biodiversity to biogeochemical cycling will come from taking a broader view of biodiversity. Such a view will necessarily encompass many levels of resolution including: 1) the importance of biodiversity to specific biogenic transformations, 2) the complexity and specificity of biotic interactions in soils that regulate biogeochemical cycling, and 3) how biodiversity may operate at different hierarchically arranged spatial and temporal scales to influence the structure and function of ecosystems.  相似文献   

11.
Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large‐scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large‐scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10‐fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large‐scale pattern; however, it affected the contribution of some groups on a local scale (e.g., large‐bodied parrotfish) highlighting the need to incorporate critical functions into conservation strategies.  相似文献   

12.
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.  相似文献   

13.
Mutualisms affect the biodiversity, distribution and abundance of biological communities. However, ecological processes that drive mutualism-related shifts in population structure are often unclear and must be examined to elucidate how complex, multi-species mutualistic networks are formed and structured. In this study, we investigated how the presence of key marine mutualistic partners can drive the organisation of local communities on coral reefs. The cleaner wrasse, Labroides dimidiatus, removes ectoparasites and reduces stress hormones for multiple reef fish species, and their presence on coral reefs increases fish abundance and diversity. Such changes in population structure could be driven by increased recruitment of larval fish at settlement, or by post-settlement processes such as modified levels of migration or predation. We conducted a controlled field experiment to examine the effect of cleaners on recruitment processes of a common group of reef fishes, and showed that small patch reefs (61–285 m2) with cleaner wrasse had higher abundances of damselfish recruits than reefs from which cleaner wrasse had been removed over a 12-year period. However, the presence of cleaner wrasse did not affect species diversity of damselfish recruits. Our study provides evidence of the ecological processes that underpin changes in local population structure in the presence of a key mutualistic partner.  相似文献   

14.
Trait diversity is believed to influence ecosystem dynamics through links between organismal traits and ecosystem processes. Theory predicts that key traits and high trait redundancy—large species richness and abundance supporting the same traits—can buffer communities against environmental disturbances. While experiments and data from simple ecological systems lend support, large‐scale evidence from diverse, natural systems under major disturbance is lacking. Here, using long‐term data from both temperate (English Channel) and tropical (Seychelles Islands) fishes, we show that sensitivity to disturbance depends on communities’ initial trait structure and initial trait redundancy. In both ecosystems, we found that increasing dominance by climatically vulnerable traits (e.g., small, fast‐growing pelagics/corallivores) rendered fish communities more sensitive to environmental change, while communities with higher trait redundancy were more resistant. To our knowledge, this is the first study demonstrating the influence of trait structure and redundancy on community sensitivity over large temporal and spatial scales in natural systems. Our results exemplify a consistent link between biological structure and community sensitivity that may be transferable across ecosystems and taxa and could help anticipate future disturbance impacts on biodiversity and ecosystem functioning.  相似文献   

15.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

16.
The study of fish feeding guild structure is a useful method to compare fish communities of complex marine ecosystems. Guild structure was determined in four coral reef depth zones, viz. the fringing reef at depths of 2, 5, 10, and 15 m, as well as in seven shallow-water biotopes within a single bay, viz. notches in fossil reef rock, mangroves, fossil reef boulders, seagrass beds, algal beds at a depth of 2 m, algal beds at a depth of 5 m, and the channel. The study was done in an inland bay on the Caribbean island of Curaçao, using a visual census technique. Total fish densities within the different feeding guilds varied considerably between the biotopes, and were generally higher in the reef biotopes and on the boulders than in the remaining bay biotopes. Cluster analysis revealed that the greatest dissimilarity in guild structures in terms of fish densities was that between the algal beds and all other biotopes, followed by that between the reef depth zones and other bay biotopes (notches, mangroves, seagrass beds, channel). The species composition of the guilds also differed considerably among the various biotopes. Species richness within the various guilds showed much smaller differences between the biotopes, but was generally somewhat higher in the reef biotopes. Cluster analysis of guild structures in terms of species richness revealed little dissimilarity among the various biotopes. The coral reef was dominated by omnivores and zooplanktivores, whereas the bay was dominated by zoobenthivores and herbivores. Differences in guild structure between the bay and the adjacent reef indicate differences in food availability.  相似文献   

17.
The role of habitat selection behaviour in the assembly of natural communities is an increasingly important theme in ecology. At the same time, ecologists and conservation biologists are keenly interested in scale and how processes at scales from local to regional interact to determine species distributions and patterns of biodiversity. How important is habitat selection in generating observed patterns of distribution and diversity at multiple spatial scales? In theory, habitat selection in response to interacting species can generate both positive and negative covariances among species distributions and create the potential to link processes of community assembly across multiple scales. Here I demonstrate that habitat selection by treefrogs in response to the distribution of fish predators functions at both the regional scale among localities and the local scale among patches within localities, implicating habitat selection as a critical link between local communities and the regional dynamics of metacommunities in complex landscapes.  相似文献   

18.
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.  相似文献   

19.
  1. The flow of individuals among communities and their interactions with local environmental filters are increasingly recognised as determinants of biodiversity patterns in riverine ecosystems. Both incoming dispersers and local conditions are expected to systematically change along connectivity gradients from headwaters to downstream communities. However, the interplay between isolation-centrality gradients and environmental conditions as determinants of biodiversity structure and function has seldom been considered.
  2. Here, we represented the dendritic structure of the Negro River basin riverscape (Uruguay) in a directed graph quantifying the isolation-centrality of each river section and evaluated the direct and indirect pathways by which riverscape structure and environmental local drivers determine fish community assembly.
  3. Fish communities (n = 58) were sampled following a stratified sampling design that properly represents this isolation-centrality connectivity gradient through the riverscape. In each community, fish abundance, biomass, richness, and functional diversity were estimated, and the direct and indirect hypothesised connections among them were evaluated with structural equation models.
  4. We showed that the range of isolation among river sections determines a 2-fold, 5-fold, and 25-fold variation in total fish richness, abundance, and biomass, respectively. Additionally, isolation-centrality was positively associated with local temperature and conductivity, while negatively related to local depth. These variables and taxonomic richness accounted for most of the variation in total fish biomass (81%) herein used as measurement of ecosystem function. Local fish abundance was negatively and positively associated with functional evenness and taxonomic richness, respectively. Furthermore, once the effect of isolation on biomass and richness was accounted for, an effect of diversity on biomass became evident.
  5. Our results provide empirical evidence for the role of riverscape structure on taxonomic and functional diversity, biomass, and the relationship between biodiversity and ecosystem function. We emphasise that in the understanding of river biodiversity and its management, local determinants should not be considered without attention to metacommunity processes.
  相似文献   

20.
We present the first representative and quantified overview of the indices used worldwide for assessing the biodiversity of coral reef fishes. On this basis, we discuss the suitability and drawbacks of the indices most widely used in the assessment of coral fish biodiversity. An extensive and systematic survey of the literature focused on coral reef fish biodiversity was conducted from 1990 up to the present. We found that the multicomponent aspect of biodiversity, which is considered as a key feature of biodiversity for numerous terrestrial and marine ecosystems, has been poorly taken into account in coral reef fish studies. Species richness is still strongly dominant while other diversity components, such as functional diversity, are underestimated even when functional information is available. We also demonstrate that the reason for choosing particular indices is often unclear, mainly based on empirical rationales and/or the reproduction of widespread habits, but generally with no clear relevance with regard to the aims of the studies. As a result, the most widely used indices (species richness, Shannon, etc.) would appear to be poorly suited to meeting the main challenges facing the monitoring of coral reef fish biodiversity in the future. Our results clearly show that coral reef scientists should rather take advantage of the multicomponent aspect of biodiversity. To facilitate this approach, we propose general guidelines to serve as a basis for the selection of indices that provide complementary and relevant information for monitoring the response of coral reef fish biodiversity in the face of structuring factors (natural or anthropic). The aim of these guidelines was to achieve a better match between the properties of the selected indices and the context of each study (e.g. expected effect of the main structuring factors, nature of data available).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号