首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During moult, stressors such as malaria and related haemosporidian parasites (e.g. Plasmodium and Haemoproteus) could affect the growth rate and quality of feathers, which in turn may compromise future reproduction and survival. Recent advances in molecular methods to study parasites have revealed that co‐infections with multiple parasites are frequent in bird–malaria parasite systems. However, there is no study of the consequences of co‐infections on the moult of birds. In house martins Delichon urbica captured and studied at a breeding site in Europe during 11 yr, we measured the quality and the growth rate of tail feathers moulted in the African winter quarters in parallel with the infection status of blood parasites that are also transmitted on the wintering ground. Here we tested if the infection with two haemosporidian parasite lineages has more negative effects than a single lineage infection. We found that birds with haemosporidian infection had lower body condition. We also found that birds co‐infected with two haemosporidian lineages had the lowest inferred growth rate of their tail feathers as compared with uninfected and single infected individuals, but co‐infections had no effect on feather quality. In addition, feather quality was negatively correlated with feather growth rate, suggesting that these two traits are traded‐off against each other. We encourage the study of haemosporidian parasite infection as potential mechanism driving this trade‐off in wild populations of birds.  相似文献   

2.
Stressful environmental conditions affect the adrenocortical function of developing animals, which can have consequences for their fitness. Discovery of the avian stress hormone corticosterone (CORT) in feathers has the potential to broaden the application of endocrine research in ecological and evolutionary studies of wild birds by providing a long‐term measure of CORT secretion. Mechanisms of CORT deposition in feathers are not well known and few studies have related feather CORT to circulating plasma CORT during feather growth. Our objective was to experimentally test the validity of using feather CORT as a measure of CORT secretion in developing birds experiencing nutritional stress. Caspian tern Hydroprogne caspia chicks were fed ad libitum or restricted (35% less than ad libitum) diets for four weeks. We measured CORT in feathers from these chicks to examine the relationship between feather CORT concentrations and nutritional limitation, circulating plasma CORT, and feather development. We found that feather CORT was higher in controls fed ad libitum than in restricted individuals, despite higher levels of plasma CORT in restricted chicks compared to controls. Feather mass and growth rates were strongly and positively related to feather CORT concentrations in both treatments. This is the first experimental study to show that feather CORT concentrations can be lower in response to nutritional stress, even when plasma CORT concentrations are elevated. Our results indicate that CORT deposition in feathers may be confounded when feather mass and growth rates are compromised by nutritional stress. We conclude that feather CORT can be used for assessing nutritional stress in growing birds, but the direction of response depends on how strongly stress affects feather development.  相似文献   

3.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

4.
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.  相似文献   

5.
Carry-over effects take place when events occurring in one season influence individual performance in a subsequent season. Blood parasites (e.g. Plasmodium and Haemoproteus) have strong negative effects on the body condition of their hosts and could slow the rate of feather growth on the wintering grounds. In turn, these winter moult costs could reduce reproductive success in the following breeding season. In house martins Delichon urbica captured and studied at a breeding site in Europe, we used ptilochronology to measure growth rate of tail feathers moulted on the winter range in Africa, and assessed infection status of blood parasites transmitted on the wintering grounds. We found a negative association between haemosporidian parasite infection status and inferred growth rate of tail feathers. A low feather growth rate and blood parasite infections were related to a delay in laying date in their European breeding quarters. In addition, clutch size and the number of fledglings were negatively related to a delayed laying date and blood parasite infection. These results stress the importance of blood parasites and feather growth rate as potentially mechanisms driving carry-over effects to explain fitness differences in wild populations of migratory birds.  相似文献   

6.
The newly described technique of extracting corticosterone (CORT) from bird feathers may serve as a less invasive, more integrated measure of a bird's stress response. Previous work indicated that elevated plasma CORT resulted in poorer quality feathers during molt. We tested the hypothesis that a direct link exists between plasma and feather CORT concentrations. We experimentally increased plasma CORT concentrations using implants and found that the corresponding rise in CORT could be detected in feathers grown during implantation. Furthermore, CORT levels in two feathers grown at the same time from the same bird were very consistent. These results provide evidence that elevated CORT is a causative factor in decreasing feather quality during molt. However, there remain technical details that suggest caution when interpreting data from CORT extracted from feathers. Different portions of a growing feather did not necessarily reflect changes in plasma CORT at the time different parts of the feather were forming, a standard pool of homogenized feathers indicated that sample mass affects measured feather CORT concentration, and different antibodies produced different measured CORT concentrations, leaving in doubt the exact steroid being assayed.  相似文献   

7.
Host responses to parasitism in the wild are often studied in the context of single host–parasite systems, which provide little insight into the ecological dynamics of host–parasite interactions within a community. Here we characterized immune system responses to mostly low-intensity, chronic infection by haemosporidian parasites in a sample of 424 individuals of 22 avian host species from the same local assemblage in the Missouri Ozarks. Two types of white blood cells (heterophils and lymphocytes) were elevated in infected individuals across species, as was the acute-phase protein haptoglobin, which is associated with inflammatory immune responses. Linear discriminant analysis indicated that individuals infected by haemosporidians occupied a subset of the overall white blood cell multivariate space that was also occupied by uninfected individuals, suggesting that these latter individuals might have harbored other pathogens or that parasites more readily infect individuals with a specific white blood cell profile. DNA sequence-defined lineages of haemosporidian parasites were sparsely distributed across the assemblage of hosts. In one well-sampled host species, the red-eyed vireo (Vireo olivaceus), heterophils were significantly elevated in individuals infected with one but not another of two common parasite lineages. Another well-sampled host, the yellow-breasted chat (Icteria virens), exhibited no differences in immune response to different haemosporidian lineages. Our results indicate that while immune responses to infection may be generalized across host species, parasite-specific immune responses may also occur.  相似文献   

8.
Tropical forest degradation affects host-parasite interactions, determining the probability of animals acquiring an infection. The activation of an immune response to fight off infections requires energy and other resources such as antioxidants which may be redirected from growth and reproduction. A key question is how selective logging—the most common form of tropical forest degradation—impacts the prevalence of avian haemosporidian infection and its correlated physiological responses (nutritional and oxidative status markers). We investigated the prevalence of Plasmodium, Haemoproteus, and Leucocytozoon parasites in 14 understorey bird species in lowland, logged and unlogged, old-growth forests of Borneo. Prevalences of infections were similar between selectively logged and unlogged forests. To explore nutritional and oxidative status effects of haemosporidian infections, we examined associations between infections and plasma proteins, plasma triglycerides, and multiple blood-based markers of oxidative status, testing for an impact of selective logging on those markers. Birds infected with Plasmodium showed higher levels of plasma proteins and non-enzymatic antioxidant capacity, and lower levels of plasma triglycerides and glutathione, compared with haemosporidian-free individuals. Conversely, birds infected with Haemoproteus showed no changes in nutritional or physiological markers compared with uninfected individuals. These results indicate higher metabolic and physiological costs of controlling Plasmodium infection, compared with Haemoproteus, possibly due to higher pathogenicity of Plasmodium. Selectively logged forests had no effect on the responses of birds to infection, suggesting that the environmental conditions of degraded forests do not appear to induce any appreciable physiological demands in parasitised birds.  相似文献   

9.
In birds, the steroid hormone corticosterone (CORT) increases in response to real or perceived threats to homeostasis. A long‐term record of CORT exposure is recorded in feathers when the hormone is incorporated into the keratinized tissue, and then preserved when the mature feather is cut off from the blood supply. The opportunity to retrospectively assess the exposure of an individual to stressors by measuring the amount of CORT in a feather has generated excitement amongst avian ecologists. However, this technique is relatively new and requires additional validations. In this study, we performed experiments in wild caught European starlings Sturnus vulgaris to test whether: 1) CORT deposition in the feather depends on time of day and 2) whether an ecologically relevant stressor (unpredictable food access) causes a change in feather CORT. We found that exogenous CORT was incorporated into feathers during the day and the night. However, there was no difference in feather CORT between birds with unpredictable access to food and those with continuous access, indicating that feather CORT might not always detect ecologically relevant stressors.  相似文献   

10.
The environment shapes host–parasite interactions, but how environmental variation affects the diversity and composition of parasite‐defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC‐parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous‐collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra‐individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency‐dependent selection. We found an MHC variant associated with a ~26% decrease in infection probability at middle elevations (1501–3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency‐dependent selection and fluctuating spatial selection in the evolution of Z. capensis MHC.  相似文献   

11.
Human induced changes on landscape can alter the biotic and abiotic factors that influence the transmission of vector-borne parasites. To examine how infection rates of vector-transmitted parasites respond to changes on natural landscapes, we captured 330 Blue-black Grassquits (Volatinia jacarina) in Brazilian biomes and assessed the prevalence and diversity of avian haemosporidian parasites (Plasmodium and Haemoproteus) across avian host populations inhabiting environment under different disturbance and climatic conditions. Overall prevalence in Blue-black Grassquits was low (11%) and infection rates exhibited considerable spatial variation, ranging from zero to 39%. Based on genetic divergence of cytochrome b gene, we found two lineages of Haemoproteus (Parahaemoproteus) and 10 of Plasmodium. We showed that Blue-black Grassquit populations inhabiting sites with higher proportion of native vegetation cover were more infected across Brazil. Other landscape metrics (number of water bodies and distance to urban areas) and climatic condition (temperature and precipitation) known to influence vector activity and promote avian malaria transmission did not explain infection probability in Blue-black Grassquit populations. Moreover, breeding season did not explain prevalence across avian host populations. Our findings suggest that avian haemosporidian prevalence and diversity in Blue-black Grassquit populations are determined by recent anthropogenic changes in vegetation cover that may alter microclimate, thus influencing vector activity and parasite transmission.  相似文献   

12.
Because of potentially deleterious effects of chronic stress, physiological measurements of stress hormones (in birds, corticosterone (CORT)) are often used to determine the consequences of natural or human-induced change. Often, it is assumed that CORT levels will be similar between the sexes and the results are pooled. However, recent studies have reported sex differences in CORT concentrations in avian species. As zebra finches (Taeniopygia guttata) are one of the most widely used bird species in laboratory studies worldwide, potential sex-specific differences in hormone metabolism, as well as the clearance rate of oral doses of exogenous CORT, are highly relevant. The results of this study show that female zebra finches have a significantly higher baseline CORT than males, which could partially be a product of differential responses to semi-isolation. In addition, a single dose of exogenous CORT resulted in different blood profiles between the sexes over time, though exogenous CORT was cleared from blood within 90 min following treatment in both sexes. Interestingly, exposure to multiple doses of exogenous CORT resulted in elevated CORT levels 24 h after treatment in both sexes. These results highlight the need for further investigations into potential sex differences in hormone metabolism, as well as possible cumulative effects of repeated stress.  相似文献   

13.
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.  相似文献   

14.
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

15.
Urban landscapes are associated with abiotic and biotic environmental changes that may result in potential stressors for wild vertebrates. Urban exploiters have physiological, morphological, and behavioral adaptations to live in cities. However, there is increasing evidence that urban exploiters themselves can suffer from urban conditions, especially during specific life‐history stages. We looked for a link between the degree of urbanization and the level of developmental stress in an urban exploiter (the house sparrow, Passer domesticus), which has recently been declining in multiple European cities (e.g., London, UK). Specifically, we conducted a large‐scale study and sampled juvenile sparrows in 11 urban and rural sites to evaluate their feather corticosterone (CORT) levels. We found that juvenile feather CORT levels were positively correlated with the degree of urbanization, supporting the idea that developing house sparrows may suffer from urban environmental conditions. However, we did not find any correlation between juvenile feather CORT levels and body size, mass, or body condition. This suggests either that the growth and condition of urban sparrows are not impacted by elevated developmental CORT levels, or that urban sparrows may compensate for developmental constraints once they have left the nest. Although feather CORT levels were not correlated with baseline CORT levels, we found that feather CORT levels were slightly and positively correlated with the CORT stress response in juveniles. This suggests that urban developmental conditions may potentially have long‐lasting effects on stress physiology and stress sensitivity in this urban exploiter.  相似文献   

16.
Arid zones of northern Venezuela are represented by isolated areas, important from an ornithological and ecological perspective due to the occurrence of restricted-range species of birds. We analysed the prevalence and molecular diversity of haemosporidian parasites of wild birds in this region by screening 527 individuals (11 families and 20 species) for parasite mitochondrial DNA. The overall prevalence of parasites was 41%, representing 17 mitochondrial lineages: 7 of Plasmodium and 10 of Haemoproteus. Two parasite lineages occurred in both the eastern and western regions infecting a single host species, Mimus gilvus. These lineages are also present throughout northern and central Venezuela in a variety of arid and mesic habitats. Some lineages found in this study in northern Venezuela have also been observed in different localities in the Americas, including the West Indies. In spite of the widespread distributions of some of the parasite lineages found in northern Venezuela, several, including some that are relatively common (e.g. Ven05 and Ven06), have not been reported from elsewhere. Additional studies are needed to characterize the host and geographical distribution of avian malaria parasite lineages, which will provide a better understanding of the influence of landscape, vector abundance and diversity, and host identity on haemosporidian parasite diversity and prevalence.  相似文献   

17.
Re-examination, using molecular tools, of the diversity of haemosporidian parasites (among which the agents of human malaria are the best known) has generally led to rearrangements of traditional classifications. In this study, we explored the diversity of haemosporidian parasites infecting vertebrate species (particularly mammals, birds and reptiles) living in the forests of Gabon (Central Africa), by analyzing a collection of 492 bushmeat samples. We found that samples from five mammalian species (four duiker and one pangolin species), one bird and one turtle species were infected by haemosporidian parasites. In duikers (from which most of the infected specimens were obtained), we demonstrated the existence of at least two distinct parasite lineages related to Polychromophilus species (i.e., bat haemosporidian parasites) and to sauropsid Plasmodium (from birds and lizards). Molecular screening of sylvatic mosquitoes captured during a longitudinal survey revealed the presence of these haemosporidian parasite lineages also in several Anopheles species, suggesting a potential role in their transmission. Our results show that, differently from what was previously thought, several independent clades of haemosporidian parasites (family Plasmodiidae) infect mammals and are transmitted by anopheline mosquitoes.  相似文献   

18.
Birds often face various stressors during feather renewing, for example, enduring infection with blood parasites. Because nutritional resources are typically limited, especially for wild animals, when an individual allocates energy to one physiological system, there is subsequently less for other processes, thereby requiring a trade‐off. Surprisingly, potential trade‐offs between malaria infection and feather growth rate have not been experimentally considered yet. Here, we conducted three studies to investigate whether a trade‐off occurs among feather growth rate, malaria infection and host health conditions. First, we explored whether naturally infected and uninfected house sparrows differed in feather growth rate in the wild. Second, we asked whether experimental inoculation of malaria parasites and/or forcing the renewal of a tail feather. Lastly, we evaluated whether individual condition was affected by experimentally‐induced feather regrowth and/or malaria experimental infection. Our findings showed that feather growth rate was negatively affected by natural malaria infection status in free‐living birds and by experimental infection in captive birds. Furthermore, birds that did not increase body mass or hematocrit during the experimental study had slower feather growth. Together our results suggest that infection with blood parasites has more negative health effects than the growth of tail feathers and that these two processes (response to blood parasite infection and renewal of feathers) are traded‐off against each other. As such, our results highlight the role of malaria parasites as a potential mechanism driving other trade‐offs in wild passerines.  相似文献   

19.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt, when all feathers are replaced. Recent evidence indicating that CORT implants slow the rate of feather regrowth in molting birds suggests that plasma CORT concentrations are downregulated during molt in order to avoid the inhibition of feather growth caused by the protein catabolic activity of CORT. To further test this hypothesis, we examined whether endogenous CORT release, stimulated by exposure to either psychological stress or physical stress (food restriction), could inhibit feather regrowth rates or decrease feather quality in birds undergoing an induced molt (feather replacement after plucking). European starlings (Sturnus vulgaris) were exposed to chronic psychological stress or food restriction for three weeks of the feather regrowth period. Throughout this time, the length of growing primary, secondary, and tail feathers was measured and blood samples were collected to measure baseline and stress-induced CORT concentrations. Upon completion of growth, feather quality was analyzed via measurements of mass, rachis length, feather area, and presence of fault bars. Both psychological and physical stress protocols elevated circulating plasma CORT but significantly less than implants from an earlier study did. Psychological stress had no effect on feather regrowth rates or feather quality. Food restriction had no effect on feather growth rate but caused asynchronous feather replacement. When combined with psychological stress, physical stress also resulted in smaller feather area. Results indicate that CORT implants may not accurately represent chronic stress physiology. Additionally, the purpose for downregulating CORT concentrations during molt appears to be more complicated than simply protecting feather production from CORT's catabolic effects.  相似文献   

20.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt, when all feathers are replaced. Recent evidence indicating that CORT implants slow the rate of feather regrowth in molting birds suggests that plasma CORT concentrations are downregulated during molt in order to avoid the inhibition of feather growth caused by the protein catabolic activity of CORT. To further test this hypothesis, we examined whether endogenous CORT release, stimulated by exposure to either psychological stress or physical stress (food restriction), could inhibit feather regrowth rates or decrease feather quality in birds undergoing an induced molt (feather replacement after plucking). European starlings (Sturnus vulgaris) were exposed to chronic psychological stress or food restriction for three weeks of the feather regrowth period. Throughout this time, the length of growing primary, secondary, and tail feathers was measured and blood samples were collected to measure baseline and stress-induced CORT concentrations. Upon completion of growth, feather quality was analyzed via measurements of mass, rachis length, feather area, and presence of fault bars. Both psychological and physical stress protocols elevated circulating plasma CORT but significantly less than implants from an earlier study did. Psychological stress had no effect on feather regrowth rates or feather quality. Food restriction had no effect on feather growth rate but caused asynchronous feather replacement. When combined with psychological stress, physical stress also resulted in smaller feather area. Results indicate that CORT implants may not accurately represent chronic stress physiology. Additionally, the purpose for downregulating CORT concentrations during molt appears to be more complicated than simply protecting feather production from CORT's catabolic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号