首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Island biodiversity has long fascinated biologists as it typically presents tractable systems for unpicking the eco‐evolutionary processes driving community assembly. In general, two recurring themes are of central theoretical interest. First, immigration, diversification, and extinction typically depend on island geographical properties (e.g., area, isolation, and age). Second, predictable ecological and evolutionary trajectories readily occur after colonization, such as the evolution of adaptive trait syndromes, trends toward specialization, adaptive radiation, and eventual ecological decline. Hypotheses such as the taxon cycle draw on several of these themes to posit particular constraints on colonization and subsequent eco‐evolutionary dynamics. However, it has been challenging to examine these integrated dynamics with traditional methods. Here, we combine phylogenomics, population genomics and phenomics, to unravel community assembly dynamics among Pheidole (Hymenoptera, Formicidae) ants in the isolated Fijian archipelago. We uphold basic island biogeographic predictions that isolated islands accumulate diversity primarily through in situ evolution rather than dispersal, and population genomic support for taxon cycle predictions that endemic species have decreased dispersal ability and demography relative to regionally widespread taxa. However, rather than trending toward island syndromes, ecomorphological diversification in Fiji was intense, filling much of the genus‐level global morphospace. Furthermore, while most endemic species exhibit demographic decline and reduced dispersal, we show that the archipelago is not an evolutionary dead‐end. Rather, several endemic species show signatures of population and range expansion, including a successful colonization to the Cook islands. These results shed light on the processes shaping island biotas and refine our understanding of island biogeographic theory.  相似文献   

2.
Understanding the historical evolution of biotas and the dynamics of contemporary human-mediated species introductions are two central tasks of biology. One hypothesis may address both-the taxon cycle. Taxon cycles are phases of range expansion and contraction coupled to ecological and evolutionary niche shifts. These historical invasion processes resemble human-mediated invasions in pattern and possibly mechanism, but both the existence of historical cycles and the roles of recent introductions are in question. We return to the system that originally inspired the taxon cycle-Melanesian ants-and perform novel tests of the hypothesis. We analyze (i) the habitat distributions of Fiji's entire ant fauna (183 species), (ii) ecological shifts associated with the in situ radiation of Fijian Pheidole in a phylogenetic context, and (iii) the ecological structure of a massive exotic ant invasion of the archipelago. Our analyses indicate lineages shift toward primary habitats, higher elevation, rarity, and ecological specialization with increasing level of endemism, consistent with taxon cycle predictions. The marginal habitats that historically formed a dispersal conduit in the Pacific are now mostly replaced by human-modified habitats dominated by a colonization pulse of exotic species. We propose this may represent the first phase of an incipient global cycle of human-mediated colonization, ecological shifts, and diversification.  相似文献   

3.
Understanding the dynamics of communities in space and time requires reconciling ecological and evolutionary processes, including colonization, adaptation, speciation and extinction. In practice, this has been challenging because empirical data obtained by traditional methods and predictive models typically focus on particular processes driving local community assembly and biogeographical structure. In this issue of Molecular Ecology, by using phylogenomics, population genomics and phenomics approaches, Darwell et al. show that ant community assembly on islands is governed by predictable eco‐evolutionary trends of geographical range expansion, adaptive radiation and local population decline. The authors provide one of the most robust lines of evidence that the evolutionary progression of island communities may often be directional and repeatable, as predicted by the concept of taxon cycles.  相似文献   

4.
Aim Provide an empirical test of the ‘radiation zone’ hypothesis of the MacArthur–Wilson theory of island biogeography using the taxon‐pulse hypothesis of Erwin and Brooks Parsimony Analysis (BPA) on Simulium (Inseliellum) Rubstov. Location Micronesia, Cook Islands, Austral Islands, Society Islands, Marquesas Islands, Fiji and New Caledonia. Methods Primary and secondary BPA of the phylogeny of Inseliellum. Results Primary BPA showed that 15% of the taxon area cladogram contained area reticulations. Secondary BPA (invoking the area duplication convention) generated a clear sequence of dispersal for Inseliellum. The sequence follows a Micronesia – Cook Islands – Marquesas Islands – Society Islands dispersal, with a separate dispersal from the Cook Islands to the Austral Islands less than 1 Ma. A radiation in the island of Tahiti (Society Islands) produced numerous dispersals from Tahiti to other islands within the Society Islands system. Islands close to Tahiti (source island) have been colonized from Tahiti more often than islands far from Tahiti, but a higher proportion of those species colonizing distant islands have become distinct species. Main conclusions The dispersal sequence of Inseliellum exhibits both old to young island dispersal and young to old island dispersal. This is due to habitat availability on each island. Inseliellum is a model system in exemplifying the ‘radiation zone’ hypothesis of MacArthur and Wilson. As well, islands close to the source are colonized more often that those far from the source, but colonization of islands far away from the source results in a higher proportion of speciation events than for islands close to the source. The diversification of Inseliellum corresponds to a taxon‐pulse radiation, with a centre of diversification on Tahiti resulting from its large area and abundant freshwater habitats. This study illustrates the utility of BPA in identifying complex scenarios that can be used to test theories about the complementary roles of ecology and phylogeny in historical biogeography.  相似文献   

5.
Aim This study addresses the origins of terrestrial biodiversity of the Fijian islands using the ant genus Lordomyrma (Hymenoptera: Formicidae: Myrmicinae) as a model system. We derive the evolution of the genus and determine its closest extra-Fijian relatives from geological data, molecular phylogenetic reconstruction and divergence estimates. Location Ant taxa were sampled in the Southwest Pacific, Melanesia, Southeast Asia, Australia and mainland China. Methods Phylogeny and divergence estimates of the ant genus Lordomyrma based on four nuclear genes (28S, ArgK, LW Rh, CAD) plus data on Indo-Pacific geological history are used to address current hypotheses regarding the origins of the Fijian biota. Results The genus Lordomyrma probably originated in mainland Asia, with subsequent colonization of Australia and the Pacific. The Fijian Lordomyrma clade is monophyletic, and originated c. 8.8 Ma, when it diverged from a sister group in Papua New Guinea. Main conclusions The colonization of Fiji by Lordomyrma is probably a result of long-distance dispersal from New Guinea, possibly aided by island hopping across the Vitiaz Arc. The timeline of diversification in Lordomyrma is broadly congruent with the Miocene fragmentation of the Vitiaz Arc and the Pliocene emergence of Vanua Levu. The biotic shuttle hypothesis, which posits ‘Eua Island as the source of Fijian endemics, is rejected based on the sister relationship of Fiji and New Guinea lineages, as well as on the Miocene submergence of the terrane below sea level. The diversity of Fijian Lordomyrma results from the radiation of a single lineage, which diverged from a New Guinea sister group. The genus appears to have originated in Asia rather than in Australia.  相似文献   

6.
Organismal traits such as ecological specialization and migratory behaviour may affect colonization potential, population persistence and degree of isolation, factors that determine the composition and genetic structure of communities. However, studies focusing on community assembly rarely consider these factors jointly. We sequenced 16 nuclear genes and one mitochondrial gene from Caucasian and European populations of 30 forest‐dwelling avian species that represent diverse ecological (specialist–generalist) and behavioural (migratory‐resident) backgrounds. We tested the effects of organismal traits on population divergence and community assembly in the Caucasus forest, a continental mountain island setting. We found that (i) there is no concordance in divergence times between the Caucasus forest bird populations and their European counterparts, (ii) habitat specialists tend to be more divergent than generalists and (iii) residents tend to be more divergent than migrants. Thus, specialists and residents contribute to the high level of endemism of Caucasus forest avifauna more than do generalists and migrants. Patterns of genetic differentiation are better explained by differences in effective population sizes, an often overlooked factor in comparative studies of phylogeography and speciation, than by divergence times or levels of gene flow. Our results suggest that the Caucasus forest avifauna was assembled through time via dispersal and/or multiple vicariant events, rather than originating simultaneously via a single isolation event. Our study is one of the first multilocus, multispecies analyses revealing how ecological and migratory traits impact the evolutionary history of community formation on a continental island.  相似文献   

7.
Dispersal plays a prominent role in most conceptual models of community assembly. However, direct measurement of dispersal across a whole community is difficult at ecologically relevant spatial scales. For cryptic organisms, such as fungi and bacteria, the scale and importance of dispersal limitation has become a major point of debate. We use an experimental island biogeographic approach to measure the effects of dispersal limitation on the ecological dynamics of an important group of plant symbionts, ectomycorrhizal fungi. We manipulated the isolation of uncolonized host seedlings across a natural landscape and used a range of molecular techniques to measure the dispersal rates of ectomycorrhizal propagules and host colonization. Some species were prolific dispersers, producing annual spore loads on the order of trillions of spores per km(2). However, fungal propagules reaching host seedlings decreased rapidly with increasing distance from potential spore sources, causing a concomitant reduction in ectomycorrhizal species richness, host colonization and host biomass. There were also strong differences in dispersal ability across species, which correlated well with the predictable composition of ectomycorrhizal communities associated with establishing pine forest. The use of molecular tools to measure whole community dispersal provides a direct confirmation for a key mechanism underlying island biogeography theory and has the potential to make microbial systems a model for understanding the role of dispersal in ecological theory.  相似文献   

8.
Colonization of islands can dramatically influence the evolutionary trajectories of organisms, with both deterministic and stochastic processes driving adaptation and diversification. Some island colonists evolve extremely large or small body sizes, presumably in response to unique ecological circumstances present on islands. One example of this phenomenon, the Greater Antillean boas, includes both small (<90 cm) and large (4 m) species occurring on the Greater Antilles and Bahamas, with some islands supporting pairs or trios of body‐size divergent species. These boas have been shown to comprise a monophyletic radiation arising from a Miocene dispersal event to the Greater Antilles, though it is not known whether co‐occurrence of small and large species is a result of dispersal or in situ evolution. Here, we provide the first comprehensive species phylogeny for this clade combined with morphometric and ecological data to show that small body size evolved repeatedly on separate islands in association with specialization in substrate use. Our results further suggest that microhabitat specialization is linked to increased rates of head shape diversification among specialists. Our findings show that ecological specialization following island colonization promotes morphological diversity through deterministic body size evolution and cranial morphological diversification that is contingent on island‐ and species‐specific factors.  相似文献   

9.
The concept of the taxon cycle in biogeography   总被引:1,自引:0,他引:1  
Taxon cycles are sequential phases of expansion and contraction of the ranges of species, associated generally with shifts in ecological distribution. The important contribution of the taxon cycle to biogeographical analysis is its emphasis on evolutionary and ecological interactions among colonizing and resident species, which influence their extinction dynamics and establish patterns of geographical distribution. Taxon cycles were inferred originally from the distribution of species across island archipelagos, where a correlation was noted between gaps in island occupancy and the degree of phenotypic differentiation. This pattern implied that phases of colonization were followed by range contraction, while endemic Antillean species that were undifferentiated between islands suggested secondary expansion and the beginning of a new cycle. This interpretation was met with scepticism, but reconstruction of phylogenetic relationships from gene sequences has now permitted us to characterize taxon cycles in Lesser Antillean birds. The relative timing of phases of the cycle can be deduced from genetic divergence between island populations. We have found that taxon cycles have periods in the order of 106 years and that cycles in different lineages occur independently of each other and independently of Pleistocene climate cycles. Individual island populations may persist for several millions of years on the larger islands of the Lesser Antilles; occasional expansion phases lead to the replacement of island populations that have disappeared, thus reducing the archipelago‐wide rate of extinction to nil. What drives taxon cycles is unknown, but we speculate that they may be caused by co‐evolution with enemy populations, and a probable mechanism would involve infrequent mutations influencing parasite virulence and avian host disease resistance. Taxon cycles undoubtedly occur on continents, but the geographical configuration of island archipelagos reveals more clearly their presence and invites their study.  相似文献   

10.
Aim Cuckoo‐shrikes and allies (Campephagidae) form a radiation of birds widely distributed in the Indo‐Pacific and Africa. Recent studies on the group have been hampered by poor taxon sampling, causing inferences about systematics and biogeography to be rather speculative. With improved taxon sampling and analyses within an explicit spatiotemporal framework, we elucidate biogeographical patterns of dispersal and diversification within this diverse clade of passerine birds. Location Africa, Asia, Australo‐Papua, the Pacific, the Philippines and Wallacea. Methods We use model‐based phylogenetic methods (Mr Bayes and garli ) to construct a phylogenetic hypothesis of the core Campephagidae (Campephagidae with the exclusion of Pericrocotus). The phylogeny is used to assess the biogeographical history of the group with a newly developed Bayesian approach to dispersal–vicariance analysis (Bayes‐diva) . We also made use of a partitioned beast analysis, with several calibration points taken from island ages, passerine mitochondrial substitution rates and secondary calibration points for passerine birds, to assess the timing of diversification and dispersal. Results We present a robust molecular phylogeny that includes all genera and 84% of the species within the core Campephagidae. Furthermore, we estimate divergence dates and ancestral area relationships. We demonstrate that Campephagidae originated in Australo‐Papua with a single lineage (Pericrocotus) dispersing to Asia early. Later, there was further extensive transoceanic dispersal from Australo‐Papua to Africa involving lineages within the core Campephagidae radiation. Main conclusions The phylogenetic relationships, along with the results of the ancestral area analysis and the timing of dispersal events, support a transoceanic dispersal scenario from Australo‐Papua to Africa by the core Campephagidae. The sister group to core Campephagidae, Pericrocotus, dispersed to mainland Asia in the late Oligocene. Asia remained uncolonized by the core Campephagidae until the Pliocene. Transoceanic dispersal is by no means an unknown phenomenon, but our results represent a convincing case of colonization over a significant water gap of thousands of kilometres from Australo‐Papua to Africa.  相似文献   

11.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.  相似文献   

12.
Binckley CA  Resetarits WJ 《Oecologia》2007,153(4):951-958
The specific dispersal/colonization strategies used by species to locate and colonize habitat patches can strongly influence both community and metacommunity structure. Habitat selection theory predicts nonrandom dispersal to and colonization of habitat patches based on their quality. We tested whether habitat selection was capable of generating patterns of diversity and abundance across a transition of canopy coverage (open and closed canopy) and nutrient addition by investigating oviposition site choice in two treefrog species (Hyla) and an aquatic beetle (Tropisternus lateralis), and the colonization dynamics of a diverse assemblage of aquatic insects (primarily beetles). Canopy cover produced dramatic patterns of presence/absence, abundance, and species richness, as open canopy ponds received 99.5% of propagules and 94.6% of adult insect colonists. Nutrient addition affected only Tropisternus oviposition, as females oviposited more egg cases at higher nutrient levels, but only in open canopy ponds. The behavioral partitioning of aquatic landscapes into suitable and unsuitable habitats via habitat selection behavior fundamentally alters how communities within larger ecological landscapes (metacommunities) are linked by dispersal and colonization.  相似文献   

13.
Disentangling the ecological factors that contribute to the assembly of the microbial symbiont communities within eukaryotic hosts is an ongoing challenge. Broadly speaking, symbiont propagules arrive either from external sources in the environment or from internal sources within the same host individual. To understand the relative importance of these propagule sources to symbiont community assembly, we characterized symbiotic fungal endophyte communities within the roots of three species of beachgrass in a field experiment. We manipulated two aspects of the external environment, successional habitat and physical disturbance. To determine the role of internal sources of propagules for endophyte community assembly, we used beachgrass individuals with different pre‐existing endophyte communities. Endophyte species richness and community composition were characterized using culture‐based and next‐generation sequencing approaches. Our results showed that external propagule sources associated with successional habitat, but not disturbance, were particularly important for colonization of most endophytic taxa. In contrast, internal propagule sources played a minor role for most endophytic taxa but were important for colonization by the dominant taxon Microdochium bolleyi. Our findings highlight the power of manipulative field experiments to link symbiont community assembly to its underlying ecological processes, and to ultimately improve predictions of symbiont community assembly across environments.  相似文献   

14.
The general dynamic model (GDM) of oceanic island biogeography views oceanic islands predominantly as sinks rather than sources of dispersing lineages. To test this, we conducted a biogeographic analysis of a highly successful insular plant taxon, Cyrtandra, and inferred the directionality of dispersal and founder events throughout the four biogeographical units of the Indo-Australian Archipelago (IAA), namely Sunda, Wallacea,  Philippines, and Sahul. Sunda was recovered as the major source area, followed by Wallacea, a system of oceanic islands. The relatively high number of events originating from Wallacea is attributed to its central location in the IAA and its complex geological history selecting for increased dispersibility. We also tested if diversification dynamics in Cyrtandra follow predictions of adaptive radiation, which is the dominant process as per the GDM. Diversification dynamics of dispersing lineages of Cyrtandra in the Southeast Asian grade showed early bursts followed by a plateau, which is consistent with adaptive radiation. We did not detect signals of diversity-dependent diversification, and this is attributed to Southeast Asian cyrtandras occupying various niche spaces, evident by their wide morphological range in habit and floral characters. The Pacific clade, which arrived at the immaturity phase of the Pacific Islands, showed diversification dynamics predicted by the island immaturity speciation pulse model (IISP), wherein rates increase exponentially, and their morphological range is controlled by the least action effect favoring woodiness and fleshy fruits. Our study provides a first step toward a framework for investigating diversification dynamics as predicted by the GDM in highly successful insular taxa.  相似文献   

15.
The legume family is so well represented in the Caribbean that if a preserve was needed somewhere on earth to harbor all of the primary lineages in this family, the flora of just Cuba would suffice. Molecular phylogenetic, biogeographic, and evolutionary rates analysis all suggest that legume diversity and endemism in the Caribbean are mostly of recent origin and are likely a function of the abundance of seasonally dry tropical forests (SDTFs) throughout the neotropics. Legumes have a strong ecological affinity for SDTFs, and the Caribbean basin is well covered by this forest type. Rate-variable molecular clock analysis suggests that the majority of worldwide island lineages of legumes have ages of much less than 30 Ma. Singular historical events invoking land bridges or mobile continental plates are thus not needed to explain Caribbean legume diversity and endemism. The Greater Antilles are large islands located close to the American continent. They are therefore expected to fairly represent the diverse continental lineages of legumes. Yet, they are distant enough to be dispersal limited. As such, island lineages can speciate and diversify over evolutionary time unimpeded by high rates of immigration from the mainland. Vicariance and other standard phylogenetic methods of historical biogeography are likely to be replaced by those of ecological and island biogeography. This is because model selection approaches derived from the neutral concept of isolation by distance will be able to quantify patterns of alpha and beta diversity and detect niche assembly and phylogenetic niche conservatism within and among metacommunities that are hypothesized to constrain phylogeny.  相似文献   

16.
Zhichao Pu  Lin Jiang 《Oikos》2015,124(10):1327-1336
Ample evidence suggests that ecological communities can exhibit historical contingencies. However, few studies have explored whether differences in assembly history can generate alternative local community states in metacommunities in which local communities are linked by dispersal. In a protist microcosm experiment, we examined the influence of species colonization history on metacommunity assembly under homogeneous environmental conditions, by manipulating both the sequence of species colonization into local communities and the rate of dispersal among local communities. Whereas the role of dispersal in structuring local communities decreased over time and became non‐significant towards the end of the experiment, species colonization history significantly influenced local communities throughout the experiment. Local communities, regardless of the rate of dispersal among them, exhibited two alternative states characterized by the dominance of different species. The alternative community states, however, emerged in the absence of priority effects that were often associated with alternative community states found in other assembly studies. Rather, they were driven by variation in species interaction strength among local communities with different assembly histories. These results suggest that dispersal among local communities may not necessarily reduce the role of species colonization history in shaping metacommunity assembly, and that differences in species colonization history need to be explicitly considered as an important factor in causing heterogeneous community states in metacommunities.  相似文献   

17.
Understanding what governs community assembly and the maintenance of biodiversity is a central issue in ecology, but has been a continuing debate. A key question is the relative importance of habitat specialization (niche assembly) and dispersal limitation (dispersal assembly). In the middle of the Loess Plateau, northwestern China, we examined how species turnover in Liaodong oak (Quercus wutaishanica) forests differed between observed and randomized assemblies, and how this difference was affected by habitat specialization and dispersal limitation using variation partitioning. Results showed that expected species turnover based on individual randomization was significantly lower than the observed value (< 0.01). The turnover deviation significantly depended on the environmental and geographical distances (< 0.05). Environmental and spatial variables significantly explained approximately 40% of the species composition variation at all the three layers (< 0.05). However, their contributions varied among forest layers; the herb and shrub layers were dominated by environmental factors, whereas the canopy layer was dominated by spatial factors. Our results underscore the importance of synthetic models that integrate effects of both dispersal and niche assembly for understanding the community assembly. However, habitat specialization (niche assembly) may not always be the dominant process in community assembly, even under harsh environments. Community assembly may be in a trait‐dependent manner (e.g., forest layers in this study). Thus, taking more species traits into account would strengthen our confidence in the inferred assembly mechanisms.  相似文献   

18.
The Canary Islands have been a focus for phylogeographic studies on the colonization and diversification of endemic angiosperm taxa. Based on phylogeographic patterns, both inter island colonization and adaptive radiation seem to be the driving forces for speciation in most taxa. Here, we investigated the diversification of Micromeria on the Canary Islands and Madeira at the inter- and infraspecific level using inter simple sequence repeat PCR (ISSR), the trnK-Intron and the trnT-trnL-spacer of the cpDNA and a low copy nuclear gene. The genus Micromeria (Lamiaceae, Mentheae) includes 16 species and 13 subspecies in Macaronesia. Most taxa are restricted endemics, or grow in similar ecological conditions on two islands. An exception is M. varia, a widespread species inhabits the lowland scrub on each island of the archipelago and could represent an ancestral taxon from which radiation started on the different islands. Our analyses support a split between the "eastern" islands Fuerteventura, Lanzarote and Gran Canaria and the "western" islands Tenerife, La Palma and El Hierro. The colonization of Madeira started from the western Islands, probably from Tenerife as indicated by the sequence data. We identified two lineages of Micromeria on Gomera but all other islands appear to be colonized by a single lineage, supporting adaptive radiation as the major evolutionary force for the diversification of Micromeria. We also discuss the possible role of gene flow between lineages of different Micromeria species on one island after multiple colonizations.  相似文献   

19.
Eastern hemlock (Tsuga canadensis) occupies a large swath of eastern North America and has historically undergone range expansion and contraction resulting in several genetically separate lineages. This conifer is currently experiencing mortality across most of its range following infestation of a non-native insect. With the goal of better understanding the current and future conservation potential of the species, we evaluate ecological differences among populations within these genetically defined clusters, which were previously inferred using nuclear microsatellite molecular markers from 58 eastern hemlock populations. We sub-divide these clusters into four genetic zones to differentiate putative north-central, north-east and southeast (SE) and southwest evolutionary lineages in eastern hemlock. We use demographic data (relative abundance, mortality, and seedling regeneration) from the Forest Inventory Analysis program in conjunction with environmental data to model how these lineages respond to current and future climatic gradients. Ecologically meaningful relationships are explored in the intraspecific context of hemlock abundance distribution and then related to genetic variation. We also assess hemlock’s colonization likelihood via a long distance dispersal model and explore its future genetic and ecological conservation potential by combining the future suitable habitats with colonization likelihoods. Results show that future habitats under climate change will markedly decline for eastern hemlock. The remaining areas with higher habitat quality and colonization potential are confined to the SE, the genetic zone nearest the species’ putative glacial refugia, pointing to the need to focus our conservation efforts on this ecologically and genetically important region.  相似文献   

20.
Identifying general patterns of colonization and radiation in island faunas is often hindered by past human-caused extinctions. The insular Caribbean is one of the only complex oceanic-type island systems colonized by land mammals, but has witnessed the globally highest level of mammalian extinction during the Holocene. Using ancient DNA analysis, we reconstruct the evolutionary history of one of the Caribbean''s now-extinct major mammal groups, the insular radiation of oryzomyine rice rats. Despite the significant problems of recovering DNA from prehistoric tropical archaeological material, it was possible to identify two discrete Late Miocene colonizations of the main Lesser Antillean island chain from mainland South America by oryzomyine lineages that were only distantly related. A high level of phylogenetic diversification was observed within oryzomyines across the Lesser Antilles, even between allopatric populations on the same island bank. The timing of oryzomyine colonization is closely similar to the age of several other Caribbean vertebrate taxa, suggesting that geomorphological conditions during the Late Miocene facilitated broadly simultaneous overwater waif dispersal of many South American lineages to the Lesser Antilles. These data provide an important baseline by which to further develop the Caribbean as a unique workshop for studying island evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号