首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, but the issue remains contentious. Here, we present the first rigorous quantitative assessment of this relationship through meta-analysis of experimental work spanning 50 years to June 2004. We analysed 446 measures of biodiversity effects (252 in grasslands), 319 of which involved primary producer manipulations or measurements. Our analyses show that: biodiversity effects are weaker if biodiversity manipulations are less well controlled; effects of biodiversity change on processes are weaker at the ecosystem compared with the community level and are negative at the population level; productivity-related effects decline with increasing number of trophic links between those elements manipulated and those measured; biodiversity effects on stability measures ('insurance' effects) are not stronger than biodiversity effects on performance measures. For those ecosystem services which could be assessed here, there is clear evidence that biodiversity has positive effects on most. Whilst such patterns should be further confirmed, a precautionary approach to biodiversity management would seem prudent in the meantime.  相似文献   

4.
Omnivory has been implicated in both diffusing and intensifying the effects of consumer control in food chains. Some have postulated that the strong, community level, top-down control apparent in lakes is not expressed in terrestrial systems because terrestrial food webs are reticulate, with high degrees of omnivory and diverse plant communities. In contrast, lake food webs are depicted as simple linear chains based on phytoplankton-derived energy. Here, we explore the dynamic implications of recent evidence showing that attached algal (periphyton) carbon contributes substantially to lake primary and secondary productivity, including fish production. Periphyton production represents a cryptic energy source in oligotrophic and mesotrophic lakes that is overlooked by previous theoretical treatment of trophic control in lakes. Literature data demonstrate that many fish are multi-chain omnivores, exploiting food chains based on both littoral and pelagic primary producers. Using consumer-resource models, we examine how multiple food chains affect fourth-level trophic control across nutrient gradients in lakes. The models predict that the stabilizing effects of linked food chains are strongest in lakes where both phytoplankton and periphyton contribute substantially to production of higher trophic levels. This stabilization enables a strong and persistent top down control on the pelagic food chain in mesotrophic lakes. The extension of classical trophic cascade theory to incorporate more complex food web structures driven by multi-chain predators provides a conceptual framework for analysis of reticulate food webs in ecosystems.  相似文献   

5.
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.  相似文献   

6.
消费者多样性对食物网结构和生态系统功能的影响   总被引:1,自引:0,他引:1  
前所未有的生物多样性丧失使人们越来越关注生物多样性的生态系统功能.现有的绝大多数研究都是局限在单一营养级别上,主要是植物上,但是今天越来越多的证明表明消费者的多样性对生态系统结构和功能具有深刻影响.综述了消费者多样性对相邻或非相邻营养级的种群密度、物种多样性和生产力等方面影响的最新进展,同时也提出了若干研究展望.总体上.消费者多样性,无论是草食动物还是肉食动物,都倾向于增加该消费者所在营养级的养分和能量利用效率,以及生产力.这可能源于取样效应,或者物种之间的互补作用,类似于植物物种多样性影响初级生产力的机制.草食动物可能降低或者提高植物物种多样性,或者没有显著影响,其具体效应取决于生态系统生产力水平和草食动物的大小.捕食者哌能通过直接抑制草食动物而间接提高植物的多样性和生产力,但这种效应的大小差异很大,甚至效应的方向,都可能随团体内捕食者所占的比例而改变.未来的研究,应该考虑应用较大尺度的实验来检测食物网复杂营养关系对生态系统特性的影响,继续探讨消费者对生态系统功能的影响机制.认为异速生长法则和生态化学计量学在食物网组分关系研究中的应用将有利于增强人们对消费者.生态系统功能关系的理解.另外,全球变暖和转基因植物对食物网中消费者结构和生态系统的功能的影响也将是未来的一个重要研究方向.  相似文献   

7.
Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.  相似文献   

8.
We apply mathematical modeling to explore different scenarios of invasion of a top predator (carnivorous zooplankton or planktivorous fish) into an epipelagic plankton ecosystem. We use a ‘minimal’ model of three nonlinear ordinary differential equations (nutrient–phytoplankton–herbivores) with the top predator density as a time-dependent parameter. The ecosystem shows different types of response, which can be described in terms of top-down trophic control. Our investigation indicates that under certain conditions the plankton ecosystem model demonstrates a surprising kind of response: in a wide range of realistic ecosystem parameters the invasion of the top predator leads to a prominent increase in the average density of zooplankton and to a resulting decrease of phytoplankton density. This phenomenon is opposite to the ‘typical’ top–down control when the carnivore pressure decreases zooplankton density which, in turn, increases phytoplankton biomass. We call the revealed type of top-down control ‘paradoxical’. Examples of such a response in natural aquatic ecosystems were reported earlier but no clear explanation has been provided hitherto. In this paper, we analyze possible mechanisms of ‘paradoxical top–down control’ and show that it can occur in eutrophic epipelagic ecosystems subject to high rate of cross-pycnocline exchange.  相似文献   

9.
Evidence that ecosystems and primary producers are limited in their productivity by multiple nutrients has caused the traditional nutrient limitation framework to include multiple limiting nutrients. The models built to mimic these responses have invoked local mechanisms at the level of the primary producers. In this paper, we explore an alternative explanation for the emergence of co‐limitation by developing a simple, stoichiometrically explicit meta‐ecosystem model with two limiting nutrients, autotrophs and herbivores. Our results show that differences in movement rates for the nutrients, autotrophs and herbivores can allow for nutrient co‐limitation in biomass response to emerge despite no local mechanisms of nutrient co‐limitation. Furthermore, our results provide an explanation to why autotrophs show positive growth responses to nutrients despite ‘nominal’ top‐down control by herbivores. These results suggest that spatial processes can be mechanisms for nutrient co‐limitation at local and regional scales, and can help explain anomalous results in the co‐limitation literature.  相似文献   

10.
11.
Jacob A. Cram 《Molecular ecology》2015,24(23):5767-5769
Marine microbes make up a key part of ocean food webs and drive ocean chemistry through a range of metabolic processes. A fundamental question in ecology is whether the diversity of organisms in a community shapes the ecological functions of that community. While there is substantial evidence to support a positive link between diversity and ecological productivity for macro‐organisms in terrestrial environments, this relationship has not previously been verified for marine microbial communities. One factor complicating the understanding of this relationship is that many marine microbes are dormant and are easily dispersed by ocean currents, making it difficult to ensure that the organisms found in a given environmental sample accurately reflect processes occurring in that environment. Another complication is that, due to microbes great range of genotypic and phenotypic variability, communities with distantly related species may have greater range of metabolic functions than communities have the same richness and evenness, but in which the species present are more closely related to each other. In this issue of Molecular Ecology, Galand et al. (2015) provide compelling evidence that the most metabolically active communities are those in which the nondormant portion of the microbial community has the highest phylogenetic diversity. They also illustrate that focusing on the active portion of the community allows for detection of temporal patterns in community structure that would not be otherwise evident. The authors’ point out that the presence of many dormant organisms that do not contribute to ecosystem functioning is a feature that makes microbial ecosystems fundamentally different from macro‐ecosystems and that this difference needs to be accounted for in microbial ecology theory.  相似文献   

12.
根据2008-2009年浙江分水江水库渔业资源和生态环境调查数据,采用Ecopath with Ecosim软件构建了分水江水库的物质平衡Ecopath模型.模型构成包括鲢、鳙、鳊、花〖HT5,7〗鱼〖KG-*3〗〖HT5,6〗骨〖HT5F〗、翘嘴鲌、鲴类、其他鱼类、寡毛类、水生昆虫、浮游动物、浮游植物、有机碎屑等14个功能组,较好地模拟了分水江的水库生态系统.结果表明: 分水江水库生态系统包含5个营养级,且营养物质流动主要发生在前3个营养级.牧食食物链和碎屑食物链是系统中的主要能流,但是食物网结构较简单,容易受到外界干扰的影响.转移效率在低营养级较低,表明系统的能量利用较低,过多的营养物质储存在系统中可能导致富营养化的发生.较低的联结指数、系统杂食性系数、Finn氏循环指数以及Finn氏平均路径长度值都表明该生态系统处于不稳定状态,而生产量/总呼吸和生产量/生物量的值较高,说明此生态系统的初级生产力远高于其呼吸量,系统处于生态发育前期.分水江水库由于发育历史较短,仍处于由不成熟向成熟发育的过程中.  相似文献   

13.
In this paper we consider what may happen to the marine ecosystem of Gran Canaria Island within the 2030 horizon, if fishing strategies different from those currently in place were implemented and we evaluate the effect of, for example, reduction of recreational–artisanal fishing, limitation of catches (e.g. total allowable catches, TAC), or spatial distribution of fishing sectors. From all scenarios tested, only those that significantly reduce the high effort of the recreational fishing would allow the recovery of the most exploited stocks in the marine ecosystem in the short and medium-term. Moreover, the best management strategy, in contribution to abundance, was obtained with a scenario that has a spatial partition of exploitation rights between artisanal and recreational fishermen and includes no-fishing zones (NTZ). This work is a first attempt to use spatial and temporal models to assess the effectiveness of alternative fishery policies in the Canary Islands.  相似文献   

14.
Many apex scavenger species, including nearly all obligate scavengers, are in a state of rapid decline and there is growing evidence these declines can drastically alter ecological food webs. Our understanding of how apex scavengers regulate populations of mesoscavengers, those less‐efficient scavengers occupying mid‐trophic levels, is improving; yet, there has been no comprehensive evaluation of the evidence around the competitive release of these species by the loss of apex scavengers. Here we present current evidence that supports the mesoscavenger release hypothesis, the increase in mesoscavengers and increase in carrion in the face of declining apex scavengers. We provide two models of scavenger dynamics to demonstrate that the mesoscavenger release hypothesis is consistent with ecological theory. We further examine the ecological and human well‐being implications of apex scavenger decline, including carrion removal and disease regulation services.  相似文献   

15.
The ecosystem response model described in this paper combines an ecosystem model and a three-dimensional circulation model of Lake Ladoga developed earlier by the authors. The ecosystem model describes the process of Lake Ladoga eutrophication, and its biological submodel describes changes in the phyto- and zooplankton. In the earlier model version, lake circulation was determined using a two-dimensional hydrodynamical model which was not completely adequate. The present model allows calculation of the distributions of phyto- and zooplankton and mineral phosphorus and nitrogen. One of its main advantages is that reliable computations of the ecosystem dynamics over an extended period of time are possible. The response of the ecosystem to different levels of phosphorus pollution loading and to weather conditions is studied.  相似文献   

16.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

17.
Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self‐sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of ‘ecological memory’ into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem's accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species. The importance of ecological memory characterising the focal ecosystem depends on (i) the absolute time since megafauna loss, (ii) the speed of abiotic and biotic turnover, (iii) the strength of species interactions characterising the focal ecosystem, and (iv) the compensatory capacity of surrounding source ecosystems. These properties related to the focal and surrounding ecosystems mediate material and information legacies (its ecological memory) and modulate the net ecosystem impact of (re)introduced megafauna species. We provide practical advice about how to quantify all these properties while highlighting the strong link between ecological memory and historically contingent ecosystem trajectories. With this newly established ecological memory–rewilding framework, we hope to guide future empirical studies that investigate the ecological effects of trophic rewilding and other ecosystem‐restoration approaches. The proposed integrated conceptual framework should also assist managers and decision makers to anticipate the possible trajectories of ecosystem dynamics after restoration actions and to weigh plausible alternatives. This will help practitioners to develop adaptive management strategies for trophic rewilding that could facilitate sustainable management of functioning ecosystems in an increasingly human‐dominated world.  相似文献   

18.
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects dopaminergic neurons in the midbrain. A recent study suggests that Orphan Nuclear Receptor 1 (NURR1) impairment may contribute to PD pathogenesis. Our study found three potent agonists for NURR1 protein based on structural and ligand-based screening methods. The pharmacophore is comprised of a hydrogen bond donor, a hydrophobic group, and two aromatic rings (DHRR). The Pharmacophore screening method screened 3142 compounds, of which 3 were screened using structure-based screening. An analysis of the molecules using Molecular Mechanics-Generalized Born Surface Area (binding free energy) revealed a range of −46.77 to −59.06 Kcal/mol. After that, chemical reactivity was investigated by density functional theory, and molecular dynamics simulation was performed (protein-ligand stability). Based on the computational studies, Lifechemical_16901310, Maybridge_2815310, and NPACT_392450 are promising agonists with respect to NURR1. To confirm the potency of the identified compounds, further validation and experiments must be conducted.  相似文献   

19.
This paper discusses the transition toward a circular economy ecosystem (CEE) for plastics by assessing and mapping existing ecosystems and coordinating efforts among ecosystem actors. The PlastiCity ecosystem is used as a case study. The study employs ecosystem analysis and mapping to identify the new activities and actors needed to transition toward a CEE. These include local and eco-friendly transportation, plastic recycling knowledge management, and upgrading the existing recycling infrastructure. The findings emphasize the significance of the joint orchestration of ecosystem actors facilitated by an ecosystem coordinator and knowledge team to achieve a CEE. It presents a tangible and feasible approach to achieving a local plastic CEE. The policymakers are encouraged to support collaborative orchestration efforts among ecosystem actors and establish knowledge management practices that facilitate ecosystem transitions.  相似文献   

20.
Mechanistic understanding of consumer-resource dynamics is critical to predicting the effects of global change on ecosystem structure, function and services. Such understanding is severely limited by mechanistic models' inability to reproduce the dynamics of multiple populations interacting in the field. We surpass this limitation here by extending general consumer-resource network theory to the complex dynamics of a specific ecosystem comprised by the seasonal biomass and production patterns in a pelagic food web of a large, well-studied lake. We parameterised our allometric trophic network model of 24 guilds and 107 feeding relationships using the lake's food web structure, initial spring biomasses and body-masses. Adding activity respiration, the detrital loop, minimal abiotic forcing, prey resistance and several empirically observed rates substantially increased the model's fit to the observed seasonal dynamics and the size-abundance distribution. This process illuminates a promising approach towards improving food-web theory and dynamic models of specific habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号