首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
  • 1 The C:P ratios of seston, bacteria, phytoplankton and zooplankton were measured twice a week in situ in mesotrophic, large and deep Lake Constance from April to December 1995. Except for zooplankton, a strong seasonality was exhibited with low C:P ratios during P‐enriched early spring conditions and high values during P‐depleted summer conditions.
  • 2 Molar C:P ratios of seston varied between 180:1 and 460:1 demonstrating moderate phosphorus limitation in spring and during the clear‐water phase, and strong limitation for the rest of the season. The sestonic C:P ratio increased significantly during two decades of re‐oligotrophication of Lake Constance, reflecting an enhanced phosphorus limitation of the plankton community in summer. Molar C:P ratios of bacteria and phytoplankton varied seasonally between 50:1 and 130:1 and 180:1 and 500:1, respectively, and indicate carbon or light limitation in winter and phosphorus limitation in summer. Zooplankton had a molar C:P ratio of about 124:115 which was nearly constant throughout the seasons.
  • 3 These differences in the C:P ratios of planktonic organisms have direct implications for phosphorus recycling within the food web as C:P ratios of excreta should be highly variable.
  相似文献   

4.
To gain better insight into the importance of predator and resourcecontrol in New Zealand lakes we surveyed the late summer trophicstructure of 25 shallow South Island lakes with contrastingnutrient levels (6–603 µg TP l–1) and fishdensities. Total catch of fish per net (CPUE) in multi-meshgillnets placed in the open water and the littoral zones waspositively related with the nutrient level. Trout CPUE was negativelycorrelated with total phosphorus (TP) and total nitrogen (TN).Zooplankton seemed largely influenced by fish, as high fishCPUE coincided with low zooplankton and Daphnia biomass, lowaverage weight of cladocerans, low contribution of Daphnia tototal cladoceran biomass, low ratio of calanoids to total copepodbiomass and low ratio of zooplankton biomass to phytoplanktonbiomass. However, chlorophyll a was only slightly negativelyrelated to Daphnia biomass and not to zooplankton biomass ina multiple regression that included TN and TP. Ciliate abundancewas positively related to chlorophyll a and negatively to Daphniabiomass, but not to total zooplankton biomass, while no relationshipswere found between heterotrophic nanoflagellates and zooplankton.The relationships between fish abundance and nutrients and fishabundance and zooplankton:phytoplankton ratio and between chlorophylla and TP largely followed the pattern obtained for 42 northtemperate Danish lakes. We conclude that fish, including trout,have a major effect on the zooplankton community structure andbiomass in the pelagial of the shallow oligotrophic to slightlyeutrophic New Zealand lakes, but that the cascading effectson phytoplankton and protist are apparently modest.  相似文献   

5.
  1. Daphnia are key organisms in pelagic food webs, acting as a food resource for fish and predatory zooplankton and regulating phytoplankton through grazing. Its population dynamic follows regular seasonal patterns, with spring peaks followed by summer population declines (midsummer declines, MSDs). Midsummer declines show high inter-annual variation, which has been attributed to different causes. However, the mechanisms controlling the MSD remain poorly understood, especially in deep stratified lakes.
  2. We tried to disentangle the factors causing Daphnia MSDs in Lake Lugano and Lake Iseo (in Switzerland and Italy), two deep peri-alpine lakes with similar trophic status and vertical mixing dynamics, characterised by phosphorus accumulation in the hypolimnion and variable mixing during late-winter turnovers.
  3. Specifically, we assessed the effects of three different hypothetical pathways according to which: (1) winter air temperature controls MSDs by influencing mixing depth during turnovers and epilimnetic phosphorus replenishment; (2) vernal air temperature influences MSD by accelerating the timing of spring population peak; and (3) summer temperature influences MSDs by increasing fish predation. We assessed the relative strength of these pathways using structural equation modelling on long-term datasets for the two lakes (29 years for Lake Lugano and 19 years for Lake Iseo).
  4. Between the hypothesised pathways, the one driven by winter air temperature (through P replenishment) influenced Daphnia abundance in spring in both lakes, but the effects propagated to summer Daphnia abundance only in Lake Lugano. Additionally, summer Daphnia abundance was influenced by the summer air temperature through a positive (although weak) effect. By comparison, vernal air temperature had no detectable effects on summer Daphnia abundance.
  5. The results revealed marked differences between the meromictic study lakes and the shallow hypertrophic water bodies that were the focus of previous research on Daphnia MSD, and also between the two study lakes. The influence of epilimnetic P replenishment on the summer Daphnia abundance in Lake Lugano, which was recovering from past eutrophication, may have reflected the greater susceptibility of deep, stratified lakes to P depletion after spring compared to shallow hypertrophic lakes or reservoirs. This effect might not have been detected in Lake Iseo because P was more consistently depleted during the study period (i.e. variance in the predictor was too low to detect an effect).
  6. This study highlighted the complexity of the effects of climate variability on Daphnia MSD in deep lakes, showing that the responses can differ even between two neighbouring lakes with similar vertical mixing dynamics and trophic status. At the same time, the results suggest that future increases in winter air temperature, caused by global warming, may cause critically low densities of Daphnia during spring and summer and compromise the ability of zooplankton to control phytoplankton biomass.
  相似文献   

6.
Stocking piscivorous salmonids in Lake Michigan produced dramaticalterations in food-web structure, including higher numbersof large-bodied zooplankton (especially Daphnia pulicaria),lower summer chlorophyll concentrations and increased watertransparency. Experimental determinations of epilimnetic phytoplanktongrowth rates and of zooplankton grazing rates indicate thatherbivorous zooplankton controlled algal dynamics during thesummer of 1983 because grazers occupied the surface waters throughoutthe day. In 1985, however, both large- and small-bodied Daphniamade approximately equal contributions to total grazer biomass,and all grazers displayed pronounced diel vertical migrations,visiting epilimnetic waters only at night. This prohibited zooplanktonfrom controlling algal dynamics because grazing losses did notexceed phytoplankton growth rates. The changes in zooplanktoncommunity composition and behavior observed in summer 1985 probablyresulted from increased predation by visually orienting planktivorousfish, especially bloater chub (Coregonus hoyi). Effects of food-webmanipulations on phytoplankton dynamics were evident only duringJuly and August. During spring and early summer copepods dominateLake Michigan's zooplankton community. Owing to their smallbody size, copepods are less susceptible to fish predation andexhibit much lower filtering rates than Daphnia. Variabilityin zooplanktivorous fish abundance probably has little effecton phytoplankton dynamics during spring and early summer.  相似文献   

7.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

8.
9.
10.
To elucidate the possibilities of using zooplankton remains in the surface sediment to describe present-days community structure and population dynamics of zooplankton, fish abundance and temperature, we compared contemporary data sampled in the pelagial during summer with the sediment record from the upper 1 cm of the sediment in 135 lakes covering a latitude gradient from Greenland in the north to New Zealand in the south. The abundance of three genera Bosmina, Daphnia and Ceriodaphnia of the total pool of ephippia was significantly related to the total abundance of the same taxa in the pelagic zone. However, in most lakes the abundance of Ceriodaphnia was higher in the sediment than in the water, which may be attributed to the overall preference by this genus for the littoral habitat. Using contemporary data from 27 Danish lakes sampled fortnightly during summer for 10 years, we found substantial inter-annual variations in the abundance of Daphnia spp., Ceriodaphnia spp., B. longirostris and B. coregoni. Yet, the sediment record mimicked the medium level well for most of the lakes, which suggests that the sediment record provides an integrated picture of the pelagic cladoceran community, which otherwise can be obtained only by long-term frequent contemporary sampling for several years. The contribution of Daphnia to the sum of Daphnia and Bosmina ephippia was negatively correlated with the abundance of fish expressed as catch per night in multi-mesh sized gill nets (CPUE). Yet, region-specific differences occurred, which partly could be eliminated by including nutrient state expressed as total phosphorus (TP) in a multiple regression. The average ratio of ephippia to the sum of ephippia and carapaces of Bosmina varied 40-fold between the sampling regions and was significantly negatively related to summer mean air temperature, and for Danish lakes also, albeit weakly, to fish CPUE but not to chlorophyll a. Apparently, temperature is the most important factor determining the ratio of parthenogenetic to ephippia producing specimens of Bosmina. We conclude that the sediment record of cladocerans is a useful indicator of community structure of pelagic cladocerans and the abundance of fish and temperature.  相似文献   

11.
12.
13.
To examine the seasonal succession of the entire zooplankton community in Lake Biwa, zooplankton biomass (on an areal basis) and its distribution patterns among crustaceans, rotifers and ciliates were studied in the north basin from April 1997 to June 1998. Seasonal changes in phytoplankton and population dynamics of Daphnia galeata were also examined to assess food condition and predation pressure by fish. From March to November, crustaceans dominated zooplankton biomass, but rotifers and ciliates were dominant from December to February. Among crustaceans, Eodiaptomus japonicus was the most abundant species, followed by D. galeata. Zooplankton biomass increased from January to a peak in early April, just before the spring bloom of phytoplankton, then decreased in mid-April when mortality rate of D. galeata increased. From mid-June, zooplankton increased and maintained a high level until the beginning of November. During this period, both birth and mortality rates of D. galeata were relatively high and a number of rotifer and crustacean species were observed. However, their abundances were very limited except for E. japonicus which likely preys on ciliates and rotifers. In Lake Biwa, food sources other than phytoplankton, such as resuspended organic matter from the sediments, seems to play a crucial role in zooplankton succession from winter to early spring, while zooplankton community seems to be regulated mainly by fish predation from summer to fall.  相似文献   

14.
15.
16.
17.
18.
19.
舟山海域大中型浮游动物群落时空变化及受控要素   总被引:1,自引:0,他引:1  
为更好地保护舟山海域的渔业资源和生态环境,了解舟山海域浮游动物组成的时空变化,于2014年到2017年对舟山海域33个站位开展4个季节的生态综合调查,结果表明:4个航次共鉴定出浮游动物成体88种和浮游幼体19类,优势种共12种,浮游动物的优势种更替和群落特征季节变化明显,春夏、夏秋、秋冬、冬春相邻季节优势种更替率分别为75%、80%、100%和60%;平均生物量为夏季(176.34 mg/m3)>春季(120.20 mg/m3)和秋季(86.28 mg/m3)>冬季(7.21 mg/m3);平均丰度为夏季(143.97个/m3)>春季(86.30个/m3)>秋季(21.38个/m3)和冬季(26.86个/m3);平均多样性指数:夏季(3.03)>秋季(2.82)>春季(2.05)>冬季(1.71)。舟山海域浮游动物群落具有明显的季节和区域差异,温度、盐度、Chl a和营养盐是影响舟山浮游动物群落时空变化的主要环境因素,其中春季浮游动物群落空间分布主要受盐度的影响,夏季主要受温度、盐度和Chl a的影响,秋季主要受Chl a的影响,冬季主要受悬浮物和溶解氧的影响,而营养盐对每个季节的浮游动物群落分布都有一定的影响。  相似文献   

20.
The number of individuals and species of zooplankton were sampled concurrently with Hydrilla biomass and water quality for one year in a small, eutrophic central Florida lake. Throughout the study, rotifer species and individuals dominated the zooplankton. The abundance of the zooplankton tended to remain high when Hydrilla biomass was at its seasonal low during late winter and early spring. When hydrilla growth increased in the late spring and summer months causing a decrease in total alkalinity, specific conductivity, water color, turbidity, orthophosphate and chlorophyll a concentrations; the abundance of the zooplankton declined. During this time, there was a shift from limnetic to littoral species, principally rotifers. Hydrilla growth did not affect the mean number of cladoceran or copepod species, but may have led to an increase in rotifer species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号