共查询到20条相似文献,搜索用时 15 毫秒
1.
The elaborate songs of songbirds are frequent models for investigating the evolution of animal signals. However, few previous studies have attempted to reconstruct historical changes in song evolution using a phylogenetic comparative approach. In particular, no comparative studies of bird song have used a large number of vocal characters and a well-supported, independently derived phylogeny. We identified 32 features in the complex vocal displays of male oropendolas (genera Psarocolius, Gymnostinops, and Ocyalus) that are relatively invariant within taxa and mapped these characters onto a robust molecular phylogeny of the group. Our analysis revealed that many aspects of oropendola song are surprisingly evolutionarily conservative and thus are potentially useful characters for reconstructing historical patterns. Of the characters that varied among taxa, nearly two thirds (19 of 29) showed no evidence of evolutionary convergence or reversal when mapped onto the tree, which was reflected in a high overall consistency index (CI = 0.78) and retention index (RI = 0.88). Some reconstructed patterns provided evidence of selection on these signals. For example, rapid divergence of the songs of the Montezuma oropendola, Gymnostinops montezuma, from those of closely related taxa suggests the recent influence of strong sexual selection. In general, our results provide insights into the mode of vocal evolution in songbirds and suggest that complex vocalizations can provide information about phylogeny. Based on this evidence, we use song characters to estimate the phylogenetic affinities of three oropendola taxa for which molecular data are not yet available. 相似文献
2.
Previous studies have found a relationship between migrationand the degree of elaboration of sexually selected traits,but investigators have differed in the mechanisms they proposedto account for this association. We examined the relationshipbetween song repertoire size and distance migrated among birdsin the genus Vireo. There is a strong positive relationshipbetween migratory distance and repertoire size in this genus,but our data do not support the specific predictions of anyof the three proposed mechanisms (the "rapid pairing," "goodmigrations," and "territory lottery" hypotheses). Migrationdistance is presumably correlated with other life-history characteristicsthat influence the development of sexually selected traits. 相似文献
3.
Cristina Romero‐Diaz Julio A. Rivera Alison G. Ossip‐Drahos Jos Jaime Zúiga‐Vega Cuauhcihuatl Vital‐García Diana K. Hews Emília P. Martins 《Journal of evolutionary biology》2019,32(4):320-330
Colour signalling traits are often lost over evolutionary time, perhaps because they increase vulnerability to visual predators or lose relevance in terms of sexual selection. Here, we used spectrometric and phylogenetic comparative analyses to ask whether four independent losses of a sexually selected blue patch are spectrally similar, and whether these losses equate to a decrease in conspicuousness or to loss of a signal. We found that patches were lost in two distinct ways: either increasing reflectance primarily at very long or at very short wavelengths, and that species with additional colour elements (UV, green and pink) may be evolutionary intermediates. In addition, we found that patch spectral profiles of all species were closely aligned with visual receptors in the receiver's retina. We found that loss of the blue patch makes males less conspicuous in terms of chromatic conspicuousness, but more conspicuous in terms of achromatic contrast, and that sexual dimorphism often persists regardless of patch loss. Dorsal surfaces were considerably more cryptic than were ventral surfaces, and species in which male bellies were the most similar in conspicuousness to their dorsal surfaces were also the most sexually dimorphic. These results emphasize the consistent importance of sexual selection and its flexible impact on different signal components through evolutionary time. 相似文献
4.
Patrick J. Ciccotto Tamra C. Mendelson 《Ethology : formerly Zeitschrift fur Tierpsychologie》2016,122(3):245-256
Sexual selection theory predicts that preferences in both sexes select for the elaboration of male nuptial coloration, with empirical evidence supporting these predictions. Empirical studies are often limited in their taxonomic inclusiveness, however, and typically do not examine how male and female preferences contribute to macroevolutionary patterns of male color variation across multiple lineages in a clade. This study examined color preferences in a group of dichromatic freshwater fishes known as darters (genus Etheostoma) that vary in the presence of male coloration. The strengths of attraction to black, blue, gray, and red models were tested in females of 18 species, in addition to males of five species. We found a positive association between the presence of red or orange on the body and the amount of time associating with red models, suggesting color variation is at least in part due to variation in female preferences between species. Males also spent more time associating with colors that most closely resembled conspecifics, suggesting that preferential responses to color in males also can contribute to the diversity of nuptial coloration in darters. 相似文献
5.
Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life‐history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life‐history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life‐history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life‐history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two‐step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life‐history strategies and a birds' environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration. 相似文献
6.
Kjetil L. Voje Thomas F. Hansen 《Evolution; international journal of organic evolution》2013,67(2):453-467
Julian Huxley showed that within‐species (static) allometric (power‐law) relations can arise from proportional growth regulation with the exponent in the power law equaling the factor of proportionality. Allometric exponents may therefore be hard to change and act as constraints on the independent evolution of traits. In apparent contradiction to this, many empirical studies have concluded that static allometries are evolvable. Many of these studies have been based, however, on a broad definition of allometry that includes any monotonic shape change with size, and do not falsify the hypothesis of constrained narrow‐sense allometry. Here, we present the first phylogenetic comparative study of narrow‐sense allometric exponents based on a reanalysis of data on eye span and body size in stalk‐eyed flies (Diopsidae). Consistent with a role in sexual selection, we found strong evidence that male slopes were tracking “optima” based on sexual dimorphism and relative male trait size. This tracking was slow, however, with estimated times of 2–3 million years for adaptation to exceed ancestral influence on the trait. Our results are therefore consistent with adaptive evolution on million‐year time scales, but cannot rule out that static allometry may act as a constraint on eye‐span adaptation at shorter time scales. 相似文献
7.
N. Joffard V. Arnal B. Buatois B. Schatz C. Montgelard 《Plant biology (Stuttgart, Germany)》2020,22(5):881-889
- Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator‐mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys.
- We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography‐mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant–pollinator interactions and floral scent composition using phylogenetic comparative methods.
- We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects.
- Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator‐mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non‐active compounds.
8.
A close relationship between morphology and habitat is well documented for anoline lizards. To test the generality of this relationship in lizards, snout-vent, tail, and limb lengths of 18 species of Tropidurus (Tropiduridae) were measured and comparisons made between body proportions and substrate usage. Phylogenetic analysis of covariance by computer simulation suggests that the three species inhabiting sandy soils have relatively longer feet than do other species. Phylogenetic ANCOVA also demonstrates that the three species inhabiting tree canopies and locomoting on small branches have short tails and hind limbs. These three species constitute a single subclade within the overall Tropidurus phylogeny and analyses with independent contrasts indicate that divergence in relative tail and hind limb length has been rapid since they split from their sister clade. Being restricted to a single subclade, the difference in body proportions could logically be interpreted as either an adaptation to the clade's lifestyle or simply a nonadaptive synapomorphy for this lineage. Nevertheless, previous comparative studies of another clade of lizards (Anolis) as well as experimental studies of Sceloporus lizards sprinting on rods of different diameters support the adaptive interpretation. 相似文献
9.
S. Goutte A. Dubois S. D. Howard R. Márquez J. J. L. Rowley J. M. Dehling P. Grandcolas R. C. Xiong F. Legendre 《Journal of evolutionary biology》2018,31(1):148-158
Long‐distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine‐scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs’ calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue. 相似文献
10.
José Alexandre Felizola Diniz Filho Fabricio Villalobos Luis Mauricio Bini 《Genetics and molecular biology》2015,38(3):396-400
Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression (PVR), in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM) was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U) process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses. 相似文献
11.
J. Jordan Price Scott M. Lanyon Kevin E. Omland 《Proceedings. Biological sciences / The Royal Society》2009,276(1664):1971-1980
Birds in which both sexes produce complex songs are thought to be more common in the tropics than in temperate areas, where typically only males sing. Yet the role of phylogeny in this apparent relationship between female song and latitude has never been examined. Here, we reconstruct evolutionary changes in female song and breeding latitude in the New World blackbirds (Icteridae), a family with both temperate and tropical representatives. We provide strong evidence that members of this group have moved repeatedly from tropical to temperate breeding ranges and, furthermore, that these range shifts were associated with losses of female song more often than expected by chance. This historical perspective suggests that male-biased song production in many temperate species is the result not of sexual selection for complex song in males but of selection against such songs in females. Our results provide new insights into the differences we see today between tropical and temperate songbirds, and suggest that the role of sexual selection in the evolution of bird song might not be as simple as we think. 相似文献
12.
Dieter Thomas Tietze Jochen Martens Balduin S. Fischer Yue‐Hua Sun Annette Klussmann‐Kolb Martin Päckert 《Ecology and evolution》2015,5(3):781-798
Songs in passerine birds are important for territory defense and mating. Speciation rates in oscine passerines are so high, due to cultural evolution, that this bird lineage makes up half of the extant bird species. Leaf warblers are a speciose Old‐World passerine family of limited morphological differentiation, so that songs are even more important for species delimitation. We took 16 sonographic traits from song recordings of 80 leaf warbler taxa and correlated them with 15 potentially explanatory variables, pairwise, and in linear models. Based on a well‐resolved molecular phylogeny of the same taxa, all pairwise correlations were corrected for relatedness with phylogenetically independent contrasts and phylogenetic generalized linear models were used. We found a phylogenetic signal for most song traits, but a strong one only for the duration of the longest and of the shortest element, which are presumably inherited instead of learned. Body size of a leaf warbler species is a constraint on song frequencies independent of phylogeny. At least in this study, habitat density had only marginal impact on song features, which even disappeared through phylogenetic correction. Maybe most leaf warblers avoid the deterioration through sound propagation in dense vegetation by singing from exposed perches. Latitudinal (and longitudinal) extension of the breeding ranges was correlated with most song features, especially verse duration (longer polewards and westwards) and complexity (lower polewards). Climate niche or expansion history might explain these correlations. The number of different element types per verse decreases with elevation, possibly due to fewer resources and congeneric species at higher elevations. 相似文献
13.
Brett C. Gonzalez Katrine Worsaae Diego Fontaneto Alejandro Martínez 《Zoologica scripta》2018,47(1):106-121
This study addresses whether cave dwelling annelids exhibited similar reductive and constructive traits equally as strong as those of arthropods and vertebrates inhabiting caves. Known as troglomorphism, these adaptations bring about striking morphologies across invertebrates and vertebrates from both aquatic and terrestrial cave habitats, and include varying degrees of eye and pigmentation loss, as well as hypertrophy of body appendages and sensorial structures. Employing phylogenetic comparative methods and ancestral character reconstructions on a worldwide data set of a group of annelids, the scale worms (Aphroditiformia), we investigate the behavioural and morphological traits of species living in marine caves in comparison with those species living outside caves. Our work demonstrated that cave scale worms respond similar to arthropods in cave environments, showing a significant elongation of sensory parapodial cirri, while lacking eyes and pigmentation. However, whereas elongation of sensory appendages likely occurred in correlation to cave colonization, eyes were plausibly lost in correlation with specialization and colonization of deep‐sea habitats. 相似文献
14.
Jeffrey P. Olberding Anthony Herrel Timothy E. Higham Theodore Garland Jr 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(4):775-795
Longer hind limbs are often associated with faster maximum sprint speeds measured in the laboratory and sometimes with increased Darwinian fitness in studies of individual variation in natural populations. Limb length may be altered by changing the length of one or all segments, with different functional consequences. Segment length evolution can be influenced by both natural and sexual selection, and lineage‐specific effects (multiple solutions) may also occur. We examined the evolution of total hind limb length, as well as thigh, crus, pes, and toe length, among 46 species of phrynosomatids and also investigated the role of habitat use and shared evolutionary history in shaping limb morphology. Because sexes are usually behaviourally and morphologically dimorphic, we examined them separately. In females, habitat was only an important predictor of crus (lower leg) length. In males, habitat was not an important predictor of any variable. Overall, clade‐level differences were more important than habitat as predictors of segment or total hind limb length. Not all limb segments scaled isometrically with the combined length of other segments, and both sex and clade affected the scaling of some segments. These results suggest that clade‐level differences are more important than habitat use for explaining differences in limb length and proportions, and sexual dimorphism may be an important consideration in morphology–performance–behaviour–fitness relationships. 相似文献
15.
M. Tsuboi A. C. O. Lim B. L. Ooi M. Y. Yip V. C. Chong I. Ahnesjö N. Kolm 《Journal of evolutionary biology》2017,30(1):150-160
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female‐biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger. 相似文献
16.
There are two main (but not mutually exclusive) methods by which subterranean rodents construct burrows: chisel-tooth digging, where large incisors are used to dig through soil; and scratch digging, where forelimbs and claws are used to dig instead of incisors. A previous study by the authors showed that upper incisors of chisel-tooth diggers were better adapted to dig but the overall cranial morphology within the rodent sample was not significantly different. This study analyzed the lower incisors and mandibles of the specimens used in the previous study to show the impact of chisel-tooth digging on the rodent mandible. We compared lower incisors and mandibular shape of chisel-tooth digging rodents with nonchisel-tooth digging rodents to see if there were morphological differences between the two groups. The shape of incisors was quantified using incisor radius of curvature and second moment of area (SMA). Mandibular shape was quantified using landmark based geometric morphometrics. We found that lower incisor shape was strongly influenced by digging group using a Generalized Phylogenetic ancova (analysis of covariance). A phylogenetic Procrustes anova (analysis of variance) showed that mandibular shape of chisel-tooth digging rodents was also significantly different from nonchisel-tooth digging rodents. The phylogenetic signal of incisor radius of curvature was weak, whereas that of incisor SMA and mandibular shape was significant. This is despite the analyses revealing significant differences in the shape of both mandibles and incisors between digging groups. In conclusion, we showed that although the mandible and incisor of rodents are influenced by function, there is also a degree of phylogenetic affinity that shapes the rodent mandibular apparatus. 相似文献
17.
Ashton KG 《Journal of evolutionary biology》2004,17(5):1157-1161
Phylogenetic comparative methods have become a standard statistical approach for analysing interspecific data, under the assumption that traits of species are more similar than expected by chance (i.e. phylogenetic signal is present). Here I test for phylogenetic signal in intraspecific body size datasets to evaluate whether intraspecific datasets may require phylogenetic analysis. I also compare amounts of phylogenetic signal in intraspecific and interspecific body size datasets. Some intraspecific body size datasets contain significant phylogenetic signal. Detection of significant phylogenetic signal was dependant upon the number of populations (n) and the amount of phylogenetic signal (K) for a given dataset. Amounts of phylogenetic signal do not differ between intraspecific and interspecific datasets. Further, relationships between significance of phylogenetic signal and sample size and amount of phylogenetic signal are similar for intraspecific and interspecific datasets. Thus, intraspecific body size datasets are similar to interspecific body size datasets with respect to phylogenetic signal. Whether these results are general for all characters requires further study. 相似文献
18.
The evolutionary origin of the long neck of giraffes is enigmatic. One theory (the 'sexual selection' theory) is that their shape evolved because males use their necks and heads to achieve sexual dominance. Support for this theory would be that males invest more in neck and head growth than do females. We have investigated this hypothesis in 17 male and 21 female giraffes with body masses ranging from juvenile to mature animals, by measuring head mass, neck mass, neck and leg length and the neck length to leg length ratio. We found no significant differences in any of these dimensions between males and females of the same mass, although mature males, whose body mass is significantly (50%) greater than that of mature females, do have significantly heavier (but not longer) necks and heavier heads than mature females. We conclude that morphological differences between males and females are minimal, that differences that do exist can be accounted for by the larger final mass of males and that sexual selection is not the origin of a long neck in giraffes. 相似文献
19.
20.
A fundamental issue in understanding human diversity is whether or not there are regular patterns and processes involved in cultural change. Theoretical and mathematical models of cultural evolution have been developed and are increasingly being used and assessed in empirical analyses. Here, we test the hypothesis that the rates of change of features of human socio-cultural organization are governed by general rules. One prediction of this hypothesis is that different cultural traits will tend to evolve at similar relative rates in different world regions, despite the unique historical backgrounds of groups inhabiting these regions. We used phylogenetic comparative methods and systematic cross-cultural data to assess how different socio-cultural traits changed in (i) island southeast Asia and the Pacific, and (ii) sub-Saharan Africa. The relative rates of change in these two regions are significantly correlated. Furthermore, cultural traits that are more directly related to external environmental conditions evolve more slowly than traits related to social structures. This is consistent with the idea that a form of purifying selection is acting with greater strength on these more environmentally linked traits. These results suggest that despite contingent historical events and the role of humans as active agents in the historical process, culture does indeed evolve in ways that can be predicted from general principles 相似文献