首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Body size often varies among conspecific neonates. As larger adults generally have higher fitness than smaller conspecifics, it is adaptive for smaller neonates to subsequently gain relatively more size increments during larval development (catch‐up growth). Although catch‐up growth has been suggested in insects, inappropriate methods have been used to examine the size dependence of growth increments. Therefore, it remains unclear to what extent catch‐up growth is common among insects. The present study examined the size dependence of growth increments among larvae of Trypoxylus dichotomus using reduced major axis regression of final to initial body masses. Catch‐up growth was found consistently for larval instars. Furthermore, simulations of the size increments revealed that not only sexual divergence of the mean size, but also catch‐up growth within sexes plays a role in the development of sexual divergence in the body size distribution of T. dichotomus. The significance of catch‐up growth in body size evolution was discussed.  相似文献   

3.
Dimensionless numbers and life history variation in Brown Trout   总被引:1,自引:0,他引:1  
Summary Dimensionless numbers, made up from components of life history as defined by growth, mortality and maturation, may provide fresh insights into life history evolution. Most studies have previously shown that these numbers are more or less constants within taxa. The variation between taxa may clarify the evolution of different life histories. We examine the variation in three dimensionless numbers using data from 29 populations of Brown TroutSalmo trutta from Norway, and find that the dimensionless numbers are not constants for the Brown Trout populations. We find that the relationship betweenK of the von Bertalanffy growth equation and the mortality rate (M) increased with increasing growth rate. Also, relative length at maturity (L /L inf) increased with increasing asymptotic length (L inf). We suggest that more such data should be collected from a large number of species and taxonomic groups, to allow a more detailed assessment of why these dimensionless numbers appear to be constants in some taxa and not in others.  相似文献   

4.
5.
  总被引:1,自引:0,他引:1  
The maturation pattern in the female European eel Anguilla anguilla was studied by investigating age and size patterns of silver eels in different aquatic environments in Sweden, covering limnic, brackish and marine waters. The results neither supported the hypothesis that there is a critical size or age when eels enter the silvery stage, nor that size and age at maturity are positively related. Age at maturity, however, was observed to be negatively related to growth rate in all localities, i.e. the female reproductive tactic apparently is to become sexually mature at the earliest possible opportunity. Furthermore, it was recognized that a significant amount of variation was due to habitat differences, since the female eel maturation pattern deviated systematically between sampling sites, as it did also when the effect of growth rate was eliminated. Thus, the ability of the female eel to adjust maturation to an optimal size and age can be questioned, because the panmictic nature of the eel means local adaptations are unlikely Growth rate dependent differences suggest that variations in maturation patterns between eel environments are linked more to the opportunity for nutrient accumulation than to other aspects of growth.  相似文献   

6.
Ninety four scalloped hammerhead sharks, Sphyrna lewini (53 females and 41 males) ranging in size from 121 to 321cm total length (TL), were collected from surface gillnetters operating off northeastern Brazil and throughout the southwestern equatorial Atlantic Ocean between January and December 1996. A common regression for TL and eviscerated weight (EW) was calculated as, logEW = –11.786 + 2.889 logTL. Females and males were categorised into reproductive stages (4 and 2, respectively) according to morphological changes in their gonads. Size at sexual maturity for females was estimated to be 240cm, while males appeared to mature at between 180 and 200cm. Gravid females had between 2 and 21 embryos or pups, varying in TL from 3 to 38cm. There was no relationship between maternal length and size of litter. Copulation and parturition appear to occur outside the sampled area and possibly closer to the coast. With the exception of slightly lower uterine and ovarian fecundities, the results support the few existing data on the reproductive cycle of S. lewini in other areas.  相似文献   

7.
Synopsis We determined age and growth, size at maturity, and fecundity for cownose rays, Rhinoptera bonasus, collected from the northern Gulf of Mexico. Vertebral age estimates ranged from 0+ to 18+ years for females and 0+ to 16+ years for males. Annual deposition of growth increments was verified with marginal increment analysis. Likelihood ratio tests indicated that the growth of the cownose ray was best described by a combined sexes Gompertz model. Median size at 50% maturity was determined to be 642 mm DW for males and 653 mm DW for females, or 4–5 years of age. Median pup size-at-birth was estimated to be 350 mm DW, with a gestation period of 11–12 months. In all cases, gravid females contained only one pup. Statistically significant differences were detected between growth curves for the Gulf of Mexico and the western Atlantic Ocean. Cownose rays in the Gulf of Mexico had lower estimates of DW and K, and a higher theoretical longevity than their conspecifics in the western Atlantic Ocean. Cownose rays in the Gulf of Mexico also attain maturity at a smaller size and earlier age than their counterparts in the western Atlantic Ocean.  相似文献   

8.
    
Age and size at maturity can have significant fitness consequences. Selection often favors early-maturing individuals because of their higher survival to maturity and greater relative contribution to population growth rate, but it may also favor delayed maturation if fitness increases with age or size at maturity. Males of several poeciliid fishes exhibit variation in age and size at maturity primarily controlled by a sex-linked gene called the P-locus. Wild-caught Phallichthys quadripunctatus males show a bimodal size distribution, which is often associated with a P-locus polymorphism in other poeciliids. We conducted two experiments to evaluate the inheritance of male age and size at maturity and the influence of social environment (presence of mature or juvenile males during development) on these traits. We specifically tested the hypothesis that male age and size at maturity in P. quadripunctatus are governed by a single Y-linked locus, and modified by the social environment. Although our results imply both a genetic and an environmental component to the dimorphism in maturation, both large and small males were able to sire both large and small sons, allowing us to reject the hypothesis that age and size at maturity in this species are controlled by a single, Y-linked locus. Our data do not conform adequately to any of the genetic mechanisms described to date for maturation polymorphism in poeciliids. We suggest alternative mechanisms that may operate in P. quadripunctatus.  相似文献   

9.
  总被引:1,自引:0,他引:1  
Trends in size distributions and age at maturity of spawning kokanee Oncorhynchus nerka during a 5 year period of declining growth conditions at Bucks Lake, California, U.S.A. were consistent with the hypothesis that reductions in growth rates in successive cohorts induce a shift to an older age at maturity. This forestalls decreases in size at maturity during a transitional period characterized by an increasing proportion of individuals that delay maturation. During the course of the study, kokanee first began declining in size at maturity, and then shifted from a 3 year to a 4 year egg to adult cycle. Individuals that spawned during their fourth year (age 3 years) were significantly larger, on average, than members of their cohort that spawned during their third year (age 2 years). This difference was greatest when age 2 year adults were smallest. The shift to an older age at maturity prevented a steady decline in size at maturity, even though age‐specific size was steadily declining over time. Size at maturity, however, began to decline again once the transition to a 4 year cycle was complete. In addition, there was a general trend of decreasing length‐specific mass. The data indicate that there is a range of growth trajectories over which delayed maturity can prevent a temporal pattern of decreasing size at maturity as growth rates decline.  相似文献   

10.
Predation has an important influence on life history traits in many organisms, especially when they are young. When cues of trout were present, juvenile sticklebacks grew faster. The increase in body size as a result of exposure to cues of predators was adaptive because larger individuals were more likely to survive predation. However, sticklebacks that had been exposed to cues of predators were smaller at adulthood. This result is consistent with some life history theory. However, these results prompt an alternative hypothesis, which is that the decreased size at adulthood reflects a deferred cost of early rapid growth. Compared to males, females were more likely to survive predation, but female size at adulthood was more affected by cues of predators than male size at adulthood, suggesting that size at adulthood might be more important to male fitness than to female fitness.  相似文献   

11.
12.
13.
    
The effects of nonselective predation on the optimal age and size of maturity of their prey are investigated using mathematical models of a simple life history with juvenile and adult stages. Fitness is measured by the product of survival to the adult stage and expected adult reproduction, which is usually an increasing function of size at maturity. Size is determined by both age at maturity and the value of costly traits that increase mean growth rate (growth effort). The analysis includes cases with fixed size but flexible time to maturity, fixed time but flexible size, and adaptively flexible values of both variables. In these analyses, growth effort is flexible. For comparison with previous theory, models with a fixed growth effort are analyzed. In each case, there may be indirect effects of predation on the prey's food supply. The effect of increased predation depends on (1) which variables are flexible; (2) whether increased growth effort requires increased exposure to predators; and (3) how increased predator density affects the abundance of food for juvenile prey. If there is no indirect effect of predators on prey food supply, size at maturity will generally decrease in response to increased predation. However, the indirect effect from increased food has the opposite effect, and the net result of predation is often increased size. Age at maturity may either increase or decrease, depending on functional forms and parameter values; this is true regardless of the presence of indirect effects. The results are compared with those of previous theoretical analyses. Observed shifts in life history in response to predation are reviewed, and the role of size-selective predation is reassessed.  相似文献   

14.
Kinnison MT  Quinn TP  Unwin MJ 《Heredity》2011,106(3):448-459
Size at age and age at maturity are important life history traits, affecting individual fitness and population demography. In salmon and other organisms, size and growth rate are commonly considered cues for maturation and thus age at maturity may or may not evolve independently of these features. Recent concerns surrounding the potential phenotypic and demographic responses of populations facing anthropogenic disturbances, such as climate change and harvest, place a premium on understanding the evolutionary genetic basis for evolution in size at age and age at maturity. In this study, we present the findings from a set of common-garden rearing experiments that empirically assess the heritable basis of phenotypic divergence in size at age and age at maturity in Chinook salmon (Oncorhynchus tshawytscha) populations introduced to New Zealand. We found consistent evidence of heritable differences among populations in both size at age and age at maturity, often corresponding to patterns observed in the wild. Populations diverged in size and growth profiles, even when accounting for eventual age at maturation. By contrast, most, but not all, cases of divergence in age at maturity were driven by the differences in size or growth rate rather than differences in the threshold relationship linking growth rate and probability of maturation. These findings help us understand how life histories may evolve through trait interactions in populations exposed to natural and anthropogenic disturbances, and how we might best detect such evolution.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Northern rock sole Lepidopsetta polyxystra females from the Kodiak Island area, Alaska, reached 50% maturity at 328 mm L T and an average age of 7 years. In contrast, southern rock sole Lepidopsetta bilineata females reached 50% maturity at 347 mm L T and an average age of 9 years. Spawning started in midwinter for northern rock sole and peaked during the spring, while spawning for southern rock sole occurred during the summer. The bottom depth for spawning northern rock sole ranged from 43 to 61 m and averaged 45 m; spawning depth for southern rock sole ranged from 35 to 120m and averaged 78m. Both species appeared to develop a single stock of oocytes and to ovulate them in a single spawning. Northern rock sole females grew faster overall ( K =0.24) than southern rock sole females ( K =0.12) but reached a smaller maximum length ( L =430 mm) than southern rock sole ( L =520mm). Males of both species grew more slowly than females after 5 years of age and reached a smaller maximum length.  相似文献   

16.
Effective population size (Ne) controls both the rate of random genetic drift and the effectiveness of selection and migration, but it is difficult to estimate in nature. In particular, for species with overlapping generations, it is easier to estimate the effective number of breeders in one reproductive cycle (Nb) than Ne per generation. We empirically evaluated the relationship between life history and ratios of Ne, Nb and adult census size (N) using a recently developed model (agene) and published vital rates for 63 iteroparous animals and plants. Nb/Ne varied a surprising sixfold across species and, contrary to expectations, Nb was larger than Ne in over half the species. Up to two-thirds of the variance in Nb/Ne and up to half the variance in Ne/N was explained by just two life-history traits (age at maturity and adult lifespan) that have long interested both ecologists and evolutionary biologists. These results provide novel insights into, and demonstrate a close general linkage between, demographic and evolutionary processes across diverse taxa. For the first time, our results also make it possible to interpret rapidly accumulating estimates of Nb in the context of the rich body of evolutionary theory based on Ne per generation.  相似文献   

17.
Abstract Mortality is a fundamental demographic rate, the nature of which has profound consequences for both the dynamics of populations and the life-history evolution of species. For example, if per capita mortality rates are age- or stage-specific, life-history traits should evolve in response to age- and stage-specific differences in selection arising from these temporally variable rates. Similarly, variation in the average mortality rate across ages and/or stages can also select for shifts in life history. Mortality rates of recently settled reef fishes can be very high and per capita mortality is commonly assumed to decrease with increasing age. A review of evidence for age-specific per capita mortality rates in reef fishes from early postsettlement up to 13 months postsettlement suggests that during this period these rates are often age invariant. The data on which these interpretations are based, however, are extremely limited both in terms of the proportion of the life cycle over which mortality rates have been sampled and the quality of these data. Nonetheless, these data do suggest that selective pressures associated with patterns of mortality may vary among species of reef fishes and that these species therefore could be more effectively used in the study of life-history evolution. At present, reef fishes are under-represented in the study of life-history evolution compared with other vertebrate taxa.  相似文献   

18.
    
Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high‐resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)‐based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine‐scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late‐maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence.  相似文献   

19.
    
Whether fluctuation in density influenced the growth and maturation variables of three aggregated cohorts (fish born during the 1986–1993, 1996–2003 and 2004–2008 periods) of Pacific sardine Sardinops sagax caeruleus collected off the Californian coast from 2004 to 2010 was investigated. Using a von Bertalanffy mixed‐effects model with aggregated cohorts as covariates, estimated growth rate significantly covaried with aggregated cohorts. Growth rate (K) was modelled as a fixed effect and estimated to be 0·264 ± 0·015 (±s.e ). Statistical contrasts among aggregated cohorts showed that the 1996–2003 cohorts had a significantly lower growth rate than the other two aggregated cohorts. The theoretical age at length zero (t0) and the standard length at infinity (LS) were modelled as random effects, and were estimated to be ?2·885 ± 0·259 (±s.e ) and 273·13 ± 6·533 mm (±s.e ). The relation of ovary‐free mass at length was significantly different among the three aggregated cohorts, with the allometric coefficient estimated to be 2·850 ± 0·013 (±s.e ) for the S. sagax population. The age‐at‐length trajectory of S. sagax born between 1986 and 2008 showed strong density dependence effects on somatic growth rates. In contrast to the density‐dependent nature of growth, the probability to be mature at‐size or at‐age was not significantly affected by aggregated cohort density. The size and the age‐at‐50% maturity were estimated to be 150·92 mm and 0·56 years, respectively. Stock migration, natural fluctuations in biomass and removal of older and larger S. sagax by fishing might have been interplaying factors controlling growth parameters during 1986–2010.  相似文献   

20.
Many animal taxa exhibit a positive correlation between sexual size dimorphism and sex differences in age at maturity, such that members of the larger sex mature at older ages than members of the smaller sex. Previous workers have suggested that sexual bimaturation is a product of sex differences in growth trajectories, but to date no one has tested this hypothesis. The current study uses growth-based models to study relationships between sexual size dimorphism and sexual bimaturation in species with asymptotic growth after maturity. These models show that sex differences in asymptotic size would produce sexual bimaturation even if both sexes approach their respective asymptotic sizes at the same age, mature at the same proportion of asymptotic size and have otherwise equivalent growth and maturation patterns. Furthermore, our analyses show that there are three ways to reduce sexual bimaturation in sexually size-dimorphic species: (1) higher characteristic growth rates for members of the larger sex, (2) larger size at birth, hatching or metamorphosis for members of the larger sex or (3) smaller ratio of size at maturity to asymptotic size (relative size at maturity) for members of the larger sex. Of these three options, sex differences in relative size at maturity are most common in size-dimorphic species and, in both male-larger and female-larger species, members of the larger sex frequently mature at a smaller proportion of their asymptotic size than do members of the smaller sex. Information about the growth and maturation patterns of a taxon can be used to determine relationships between sexual size dimorphism and sexual bimaturation for the members of that taxon. This process is illustrated for Anolis lizards, a genus in which both sexes exhibit the same strong correlation (r 0.97) between size at maturity and asymptotic size, and in which the relative size at maturity is inversely related to asymptotic size for both sexes. As a result, sexually size-dimorphic species of anoles exhibit the expected pattern of a smaller relative size at maturity for members of the larger sex. However, for species in this genus, sex differences in the relative size at maturity are not strong enough to produce the same age at maturity for both sexes in sexually size-dimorphic species. Members of the larger sex (usually males) are still expected to mature at older ages than members of the smaller sex in Anolis lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号