共查询到20条相似文献,搜索用时 15 毫秒
1.
Under natural conditions, plants are subjected to continuous changes of irradiance that drive variations of stomatal conductance to water vapour (gs). We propose a dynamic model to predict the temporal response of gs at the leaf level using an asymmetric sigmoid function with a unique parameter describing time constants for increasing and decreasing gs. The model parameters were adjusted to observed data using Approximate Bayesian Computation. We tested the model performance for (1) instant changes of irradiance; or (2) continuous and controlled variations of irradiance simulating diurnal time courses. Compared with the two mostly used steady‐state models, our dynamic model described daily time courses of gs with a higher accuracy. In particular, it was able to describe the hysteresis of gs responses to increasing/decreasing irradiance and the resulting rapid variations of intrinsic water‐use efficiency. Compared to the mechanistic model of temporal responses of gs by Kirschbaum, Gross & Pearcy, for which time constants were estimated with a large variance, our model estimated time constants with a higher precision. It is expected to improve predictions of water loss and water‐use efficiency in higher scale models by using a small number of parameters. 相似文献
2.
Alexander Nater Maja P. Greminger Natasha Arora Carel P. van Schaik Benoit Goossens Ian Singleton Ernst J. Verschoor Kristin S. Warren Michael Krützen 《Molecular ecology》2015,24(2):310-327
Investigating how different evolutionary forces have shaped patterns of DNA variation within and among species requires detailed knowledge of their demographic history. Orang‐utans, whose distribution is currently restricted to the South‐East Asian islands of Borneo (Pongo pygmaeus) and Sumatra (Pongo abelii), have likely experienced a complex demographic history, influenced by recurrent changes in climate and sea levels, volcanic activities and anthropogenic pressures. Using the most extensive sample set of wild orang‐utans to date, we employed an Approximate Bayesian Computation (ABC) approach to test the fit of 12 different demographic scenarios to the observed patterns of variation in autosomal, X‐chromosomal, mitochondrial and Y‐chromosomal markers. In the best‐fitting model, Sumatran orang‐utans exhibit a deep split of populations north and south of Lake Toba, probably caused by multiple eruptions of the Toba volcano. In addition, we found signals for a strong decline in all Sumatran populations ~24 ka, probably associated with hunting by human colonizers. In contrast, Bornean orang‐utans experienced a severe bottleneck ~135 ka, followed by a population expansion and substructuring starting ~82 ka, which we link to an expansion from a glacial refugium. We showed that orang‐utans went through drastic changes in population size and connectedness, caused by recurrent contraction and expansion of rainforest habitat during Pleistocene glaciations and probably hunting by early humans. Our findings emphasize the fact that important aspects of the evolutionary past of species with complex demographic histories might remain obscured when applying overly simplified models. 相似文献
3.
Leroy G Danchin-Burge C Palhiere I Baumung R Fritz S Mériaux JC Gautier M 《Animal genetics》2012,43(3):309-314
On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds. 相似文献
4.
With the availability of whole-genome sequence data biologists are able to test hypotheses regarding the demography of populations. Furthermore, the advancement of the Approximate Bayesian Computation (ABC) methodology allows the demographic inference to be performed in a simple framework using summary statistics. We present here msABC, a coalescent-based software that facilitates the simulation of multi-locus data, suitable for an ABC analysis. msABC is based on Hudson's ms algorithm, which is used extensively for simulating neutral demographic histories of populations. The flexibility of the original algorithm has been extended so that sample size may vary among loci, missing data can be incorporated in simulations and calculations, and a multitude of summary statistics for single or multiple populations is generated. The source code of msABC is available at http://bio.lmu.de/~pavlidis/msabc or upon request from the authors. 相似文献
5.
Liisa Loog Olaf Thalmann Mikkel‐Holger S. Sinding Verena J. Schuenemann Angela Perri Mietje Germonpr Herve Bocherens Kelsey E. Witt Jose A. Samaniego Castruita Marcela S. Velasco Inge K. C. Lundstrm Nathan Wales Gontran Sonet Laurent Frantz Hannes Schroeder Jane Budd Elodie‐Laure Jimenez Sergey Fedorov Boris Gasparyan Andrew W. Kandel Martina Lzni
kov‐Galetov Hannes Napierala Hans‐Peter Uerpmann Pavel A. Nikolskiy Elena Y. Pavlova Vladimir V. Pitulko Karl‐Heinz Herzig Ripan S. Malhi Eske Willerslev Anders J. Hansen Keith Dobney M. Thomas P. Gilbert Johannes Krause Greger Larson Anders Eriksson Andrea Manica 《Molecular ecology》2020,29(9):1596-1610
Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographical distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the Late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single Late Pleistocene population. Both the geographical origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long‐range migration has played an important role in the population history of a large carnivore, and provides insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because Late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog. 相似文献
6.
KASSO DAÏNOU JEAN‐PHILIPPE BIZOUX JEAN‐LOUIS DOUCET GRÉGORY MAHY OLIVIER J. HARDY MYRIAM HEUERTZ 《Molecular ecology》2010,19(20):4462-4477
The impact of the Pleistocene climate oscillations on the structure of biodiversity in tropical regions remains poorly understood. In this study, the forest refuge theory is examined at the molecular level in Milicia excelsa, a dioecious tree with a continuous range throughout tropical Africa. Eight nuclear microsatellites (nSSRs) and two sequences and one microsatellite from chloroplast DNA (cpDNA) showed a deep divide between samples from Benin and those from Lower Guinea. This suggests that these populations were isolated in separate geographical regions, probably for several glacial cycles of the Pleistocene, and that the nuclear gene pools were not homogenized despite M. excelsa’s wind‐pollination syndrome. The divide could also be related to seed dispersal patterns, which should be largely determined by the migration behaviour of M. excelsa’s main seed disperser, the frugivorous bat Eidolon helvum. Within Lower Guinea, a north–south divide, observed with both marker types despite weak genetic structure (nSSRs: FST = 0.035, cpDNA: GST = 0.506), suggested the existence of separate Pleistocene refugia in Cameroon and the Gabon/Congo region. We inferred a pollen‐to‐seed dispersal distance ratio of c. 1.8, consistent with wide‐ranging gene dispersal by both wind and bats. Simulations in an Approximate Bayesian Computation framework suggested low nSSR and cpDNA mutation rates, but imprecise estimates of other demographic parameters, probably due to a substantial gene flow between the Lower Guinean gene pools. The decline of genetic diversity detected in some Gabonese populations could be a consequence of the relatively recent establishment of a closed canopy forest, which could negatively affect M. excelsa’s reproductive system. 相似文献
7.
Chris C. Nice Zachariah Gompert James A. Fordyce Matthew L. Forister Lauren K. Lucas C. Alex Buerkle 《Evolution; international journal of organic evolution》2013,67(4):1055-1068
The power of hybridization between species to generate variation and fuel adaptation is poorly understood despite long‐standing interest. There is, however, increasing evidence that hybridization often generates biodiversity, including via hybrid speciation. We tested the hypothesis of hybrid speciation in butterflies occupying extreme, high‐altitude habitats in four mountain ranges in western North America with an explicit, probabilistic model, and genome‐wide DNA sequence data. Using this approach, in concert with ecological experiments and observations and morphological data, we document three lineages of hybrid origin. These lineages have different genome admixture proportions and distinctive trait combinations that suggest unique and independent evolutionary histories. 相似文献
8.
Genetic samples can be used to understand and predict the behaviour of species living in a fragmented and temporally changing environment. In this regard, models of coalescence conditioned to an environment through an explicit modelling of population growth and migration have been developed in recent years, and simulators implementing these models have been developed, enabling biologists to estimate parameters of interest with Approximate Bayesian Computation techniques. However, model choice remains limited, and developing new coalescence simulators is extremely time consuming because code re‐use is limited. We present Quetzal, a C++ library composed of re‐usable components, which is sufficiently general to efficiently implement a wide range of spatially explicit coalescence‐based environmental models of population genetics and to embed the simulation in an Approximate Bayesian Computation framework. Quetzal is not a simulation program, but a toolbox for programming simulators aimed at the community of scientific coders and research software engineers in molecular ecology and phylogeography. This new code resource is open‐source and available at https://becheler.github.io/pages/quetzal.html along with other documentation resources. 相似文献
9.
10.
The range of a species is the result of the relative contribution of spatial tracking of environmental requirements and adaptation to ecological conditions outside the ancestral niche. The appearance of novel habitats caused by climatic oscillation can promote range expansion and accompanying demographic growth. The demographic dynamics of populations leave a signal in patterns. We modeled three competing scenarios pertaining to the circumstance of a range expansion by the Karoo Scrub‐Robin into newly available habitat resulting from the increasing aridification of southern Africa. Genetic variation was contrasted with the theoretical expectations of a spatial range expansion, and compared with data of a putative adaptive trait. We infer that this bird likely colonized the arid zone, as a consequence of adaptive evolution in a small peripheral population, followed by an expansion with recurrent exchange of migrants with the ancestral populations. 相似文献
11.
M. L. PINSKY S. D. NEWSOME B. R. DICKERSON Y. FANG M. VAN TUINEN D. J. KENNETT R. R. REAM E. A. HADLY 《Molecular ecology》2010,19(12):2418-2429
Population loss is often a harbinger of species extinction, but few opportunities exist to follow a species’ demography and genetics through both time and space while this occurs. Previous research has shown that the northern fur seal (Callorhinus ursinus) was extirpated from most of its range over the past 200–800 years and that some of the extirpated populations had unique life history strategies. In this study, widespread availability of subfossils in the eastern Pacific allowed us to examine temporal changes in spatial genetic structure during massive population range contraction and partial recovery. We sequenced the mitochondrial control region from 40 ancient and 365 modern samples and analyzed them through extensive simulations within a serial Approximate Bayesian Computation framework. These analyses suggest that the species maintained a high abundance, probably in subarctic refugia, that dispersal rates are likely 85% per generation into new breeding colonies, and that population structure was not higher in the past. Despite substantial loss of breeding range, this species’ high dispersal rates and refugia appear to have prevented a loss of genetic diversity. High dispersal rates also suggest that previous evidence for divergent life history strategies in ancient populations likely resulted from behavioral plasticity. Our results support the proposal that panmictic, or nearly panmictic, species with large ranges will be more resilient to future disturbance and environmental change. When appropriately verified, evidence of low population structure can be powerful information for conservation decision‐making. 相似文献
12.
Sylvain Ursenbacher Michaël Guillon Hervé Cubizolle Andréaz Dupoué Gabriel Blouin‐Demers Olivier Lourdais 《Molecular ecology》2015,24(14):3639-3651
Understanding the impact of postglacial recolonization on genetic diversity is essential in explaining current patterns of genetic variation. The central–marginal hypothesis (CMH) predicts a reduction in genetic diversity from the core of the distribution to peripheral populations, as well as reduced connectivity between peripheral populations. While the CMH has received considerable empirical support, its broad applicability is still debated and alternative hypotheses predict different spatial patterns of genetic diversity. Using microsatellite markers, we analysed the genetic diversity of the adder (Vipera berus) in western Europe to reconstruct postglacial recolonization. Approximate Bayesian Computation (ABC) analyses suggested a postglacial recolonization from two routes: a western route from the Atlantic Coast up to Belgium and a central route from the Massif Central to the Alps. This cold‐adapted species likely used two isolated glacial refugia in southern France, in permafrost‐free areas during the last glacial maximum. Adder populations further from putative glacial refugia had lower genetic diversity and reduced connectivity; therefore, our results support the predictions of the CMH. Our study also illustrates the utility of highly variable nuclear markers, such as microsatellites, and ABC to test competing recolonization hypotheses. 相似文献
13.
Daniel L. Jeffries Gordon H. Copp Gregory E. Maes Lori Lawson Handley Carl D. Sayer Bernd Hänfling 《Ecology and evolution》2017,7(9):2871-2882
A fundamental consideration for the conservation of a species is the extent of its native range, that is, regions naturally colonized. However, both natural processes and human‐mediated introductions can drive species distribution shifts. Ruling out the human‐mediated introduction of a species into a given region is vital for its conservation, but remains a significant challenge in most cases. The crucian carp Carassius carassius (L.) is a threatened freshwater fish thought to be native to much of Europe. However, its native status in England is based only on anecdotal evidence. Here, we devise an approach that can be used to empirically test the native status of English fauna. We use this approach, along with 13 microsatellite loci, population structure analyses, and Approximate Bayesian Computation (ABC), to test hypotheses for the origins of C. carassius in England. Contrary to the current consensus, we find strong support for the human‐mediated introduction of C. carassius into England during the 15th century. This result stimulates an interesting and timely debate surrounding motivations for the conservation of species. We discuss this topic, and the potential for continued conservation of C. carassius in England, despite its non‐native origins. 相似文献
14.
15.
The definition of conservation units is crucial for the sustainable management of endangered species, though particularly challenging when recent and past anthropogenic and natural gene flow might have played a role. The conservation of the European grayling, Thymallus thymallus, is particularly complex in its southern distribution area, where the Adriatic evolutionary lineage is endangered by a long history of anthropogenic disturbance, intensive stocking and potentially widespread genetic introgression. We provide mtDNA sequence and microsatellite data of 683 grayling from 30 sites of Adriatic as well as Danubian and Atlantic origin. We apply Bayesian clustering and Approximate Bayesian Computation (ABC) to detect microgeographic population structure and to infer the demographic history of the Adriatic populations, to define appropriate conservation units. Varying frequencies of indigenous genetic signatures of the Adriatic grayling were revealed, spanning from marginal genetic introgression to the collapse of native gene pools. Genetic introgression involved multiple exotic source populations of Danubian and Atlantic origin, thus evidencing the negative impact of few decades of stocking. Within the Adige River system, a contact zone of western Adriatic and eastern Danubian populations was detected, with ABC analyses suggesting a historical anthropogenic origin of eastern Adige populations, most likely founded by medieval translocations. Substantial river‐specific population substructure within the Adriatic grayling Evolutionary Significant Unit points to the definition of different conservation units. We finally propose a catalog of management measures, including the legal prohibition of stocking exotic grayling and the use of molecular markers in supportive‐ and captive‐breeding programs. 相似文献
16.
Sean Hoban 《Molecular ecology》2014,23(10):2383-2401
Stochastic simulation software that simultaneously model genetic, population and environmental processes can inform many topics in molecular ecology. These include forecasting species and community response to environmental change, inferring dispersal ecology, revealing cryptic mating, quantifying past population dynamics, assessing in situ management options and monitoring neutral and adaptive biodiversity change. Advances in population demographic–genetic simulation software, especially with respect to individual life history, landscapes and genetic processes, are transforming and expanding the ways that molecular data can be used. The aim of this review is to explain the roles that such software can play in molecular ecology studies (whether as a principal component or a supporting function) so that researchers can decide whether, when and precisely how simulations can be incorporated into their work. First, I use seven case studies to demonstrate how simulations are employed, their specific advantage/necessity and what alternative or complementary (nonsimulation) approaches are available. I also explain how simulations can be integrated with existing spatial, environmental, historical and genetic data sets. I next describe simulation features that may be of interest to molecular ecologists, such as spatial and behavioural considerations and species' interactions, to provide guidance on how particular simulation capabilities can serve particular needs. Lastly, I discuss the prospect of simulation software in emerging challenges (climate change, biodiversity monitoring, population exploitation) and opportunities (genomics, ancient DNA), in order to emphasize that the scope of simulation‐based work is expanding. I also suggest practical considerations, priorities and elements of best practice. This should accelerate the uptake of simulation approaches and firmly embed them as a versatile tool in the molecular ecologist's toolbox. 相似文献
17.
18.
Inferring the processes underlying spatial patterns of genomic variation is fundamental to understand how organisms interact with landscape heterogeneity and to identify the factors determining species distributional shifts. Here, we use genomic data (restriction site‐associated DNA sequencing) to test biologically informed models representing historical and contemporary demographic scenarios of population connectivity for the Iberian cross‐backed grasshopper Dociostaurus hispanicus, a species with a narrow distribution that currently forms highly fragmented populations. All models incorporated biological aspects of the focal taxon that could hypothetically impact its geographical patterns of genomic variation, including (a) spatial configuration of impassable barriers to dispersal defined by topographic landscapes not occupied by the species; (b) distributional shifts resulting from the interaction between the species bioclimatic envelope and Pleistocene glacial cycles; and (c) contemporary distribution of suitable habitats after extensive land clearing for agriculture. Spatiotemporally explicit simulations under different scenarios considering these aspects and statistical evaluation of competing models within an Approximate Bayesian Computation framework supported spatial configuration of topographic barriers to dispersal and human‐driven habitat fragmentation as the main factors explaining the geographical distribution of genomic variation in the species, with no apparent impact of hypothetical distributional shifts linked to Pleistocene climatic oscillations. Collectively, this study supports that both historical (i.e., topographic barriers) and contemporary (i.e., anthropogenic habitat fragmentation) aspects of landscape composition have shaped major axes of genomic variation in the studied species and emphasizes the potential of model‐based approaches to gain insights into the temporal scale at which different processes impact the demography of natural populations. 相似文献
19.
S. PLOUVIEZ T. M. SHANK† B. FAURE‡ C. DAGUIN-THIEBAUT F. VIARD F. H. LALLIER D. JOLLIVET 《Molecular ecology》2009,18(18):3903-3917
The use of sequence polymorphism from individual mitochondrial genes to infer past demography has recently proved controversial because of the recurrence of selective sweeps acting over genes and the need for unlinked multilocus data sets. However, comparative analyses using several species for one gene and/or multiple genes for one species can serve as a test for potential selective effects and clarify our understanding of historical demographic effects. This study compares nucleotide polymorphisms in mitochondrial cytochrome oxidase I across seven deep-sea hydrothermal vent species that live along the volcanically active East Pacific Rise. Approximate Bayesian Computation (ABC) method, developed to trace shared vicariant events across species pairs, indicates the occurrence of two across species divergence times, and suggests that the present geographical patterns of genetic differentiation may be explained by two periods of significant population isolation. The oldest period dates back 11.6 Ma and is associated with the vent limpet Lepetodrilus elevatus , while the most recent period of isolation is 1.3 Ma, which apparently affected all species examined and coincides with a transition zone across the equator. Moreover, significant negative Tajima's D and star-like networks were observed for all southern lineages, suggesting that these lineages experienced a concomitant demographic and geographical expansion about 100 000–300 000 generations ago. This expansion may have initiated from a wave of range expansions during the secondary colonization of new sites along the Southern East Pacific Rise (founder effects below the equator) or recurrent bottleneck events because of the increase of eruptive phases associated with the higher spreading rates of the ridge in this region. 相似文献
20.
The relative importance of the processes that generate and maintain biodiversity is a
major and controversial topic in evolutionary biology with large implications for
conservation management. The Atlantic Forest of Brazil, one of the world''s richest
biodiversity hot spots, is severely damaged by human activities. To formulate an efficient
conservation policy, a good understanding of spatial and temporal biodiversity patterns
and their underlying evolutionary mechanisms is required. With this aim, we performed a
comprehensive phylogeographic study using a low-dispersal organism, the land planarian
species Cephaloflexa bergi (Platyhelminthes, Tricladida). Analysing multi-locus
DNA sequence variation under the Approximate Bayesian Computation framework, we evaluated
two scenarios proposed to explain the diversity of Southern Atlantic Forest (SAF) region.
We found that most sampled localities harbour high levels of genetic diversity, with
lineages sharing common ancestors that predate the Pleistocene. Remarkably, we detected
the molecular hallmark of the isolation-by-distance effect and little evidence of a recent
colonization of SAF localities; nevertheless, some populations might result from very
recent secondary contacts. We conclude that extant SAF biodiversity originated and has
been shaped by complex interactions between ancient geological events and more recent
evolutionary processes, whereas Pleistocene climate changes had a minor influence in
generating present-day diversity. We also demonstrate that land planarians are an
advantageous biological model for making phylogeographic and, particularly, fine-scale
evolutionary inferences, and propose appropriate conservation policies. 相似文献