首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colonization of new habitats can relax selection pressures, and traits or trait combinations no longer selected for might become reduced or lost. We investigated behavioural differentiation and behavioural trait integration in the freshwater isopod Asellus aquaticus. This isopod has recently colonized a novel habitat and diverged into two ecotypes which encounter different predator faunas. We investigated sex-specific behavioural differences and phenotypic integration in three behavioural assays: (i) time to emerge (TE) from a shelter, (ii) activity and (iii) escape behaviour. General activity and escape behaviour differed between ecotypes. Furthermore, general activity and TE differed between sexes. Behavioural traits were more frequently correlated in the ancestral habitat, and phenotypic integration tended to be higher in this habitat as well. Our study suggests that different predator types, but also other ecological factors such as habitat matrices and population densities, might explain the differences in behavioural integration in these ecotypes.  相似文献   

2.
The ability to express phenotypically plastic responses to environmental cues might be adaptive in changing environments. We studied phenotypic plasticity in mating behaviour as a response to population density and adult sex ratio in a freshwater isopod (Asellus aquaticus). A. aquaticus has recently diverged into two distinct ecotypes, inhabiting different lake habitats (reed Phragmites australis and stonewort Chara tomentosa, respectively). In field surveys, we found that these habitats differ markedly in isopod population densities and adult sex ratios. These spatially and temporally demographic differences are likely to affect mating behaviour. We performed behavioural experiments using animals from both the ancestral ecotype (“reed” isopods) and from the novel ecotype (“stonewort” isopods) population. We found that neither ecotype adjusted their behaviour in response to population density. However, the reed ecotype had a higher intrinsic mating propensity across densities. In contrast to the effects of density, we found ecotype differences in plasticity in response to sex ratio. The stonewort ecotype show pronounced phenotypic plasticity in mating propensity to adult sex ratio, whereas the reed ecotype showed a more canalised behaviour with respect to this demographic factor. We suggest that the lower overall mating propensity and the phenotypic plasticity in response to sex ratio have evolved in the novel stonewort ecotype following invasion of the novel habitat. Plasticity in mating behaviour may in turn have effects on the direction and intensity of sexual selection in the stonewort habitat, which may fuel further ecotype divergence.  相似文献   

3.
In many organisms, genotypic selection may be a less effective means of adapting to unpredictable environments than is selection for phenotypic plasticity. To determine whether genotypic selection is important in the evolution of complex life cycles of amphibians that breed in seasonally ephemeral habitats, we examined whether mortality risk from habitat drying in natural populations of small-mouthed salamanders (Ambystoma texanum) corresponded to length of larval period when larvae from the same populations were grown in a common laboratory environment. Comparisons were made at two levels of organization within the species: 1) among geographic races that are under strongly divergent selection regimes associated with the use of pond and stream habitats and 2) among populations within races that use the same types of breeding habitats. Morphological evidence indicates that stream-breeding A. texanum evolved from pond-breeding populations that recently colonized streams. Larvae in streams incur heavy mortality from stream drying, so the upper bound on length of larval period is currently set by the seasonal duration of breeding sites. We hypothesized that selection would reduce length of larval period of pond-breeders that colonize streams if their larval periods are inherently longer than those of stream-breeders. The results of laboratory experiments support this hypothesis. When grown individually in a common environment, larvae from stream populations had significantly shorter larval periods than larvae from pond populations. Within races, however, length of larval period did not correlate significantly with seasonal duration of breeding sites. When males of both races were crossed to a single pond female, offspring of stream males had significantly shorter larval periods than offspring of pond males. Collectively, these data suggest that differences in complex life cycles among pond and stream-breeders are due to genotypic selection related to mortality from habitat drying. Stream larvae in the common-environment experiment were significantly smaller at metamorphosis than pond larvae. Yet, the evolution of metamorphic size cannot be explained readily by direct selection: there are no intuitively obvious advantages of being relatively small at metamorphosis in streams. A positive phenotypic correlation was observed between size at metamorphosis and length of larval period in most laboratory populations. A positive additive genetic correlation between these traits was demonstrated recently in another amphibian. Thus, we suspect that metamorphic size of stream-breeders evolved indirectly as a consequence of selection to shorten length of larval period.  相似文献   

4.
We tested for adaptive population structure in the frog Rana temporaria by rearing tadpoles from 23 populations in a common garden experiment, with and without larval dragonfly predators. The goal was to compare tadpole phenotypes with the habitats of their source ponds. The choice of traits and habitat variables was guided by prior information about phenotypic function. There were large differences among populations in life history, behaviour, morphological shape, and the predator-induced plasticities in most of these. Body size and behaviour were correlated with predation risk in the source pond, in agreement with adaptive population divergence. Tadpoles from large sunny ponds were morphologically distinct from those inhabiting small woodland ponds, although here an adaptive explanation was unclear. There was no evidence that plasticity evolves in populations exposed to more variable environments. Much among-population variation in phenotype and plasticity was not associated with habitat, perhaps reflecting rapid changes in wetland habitats.  相似文献   

5.
Environmental conditions experienced early in life have been shown to significantly affect growth trajectories at later stages in many vertebrate species. Amphibians typically have a biphasic life history, with an aquatic larval phase during early development and a subsequent terrestrial adult phase after completed metamorphosis. Thus, the early conditions have an especially strong impact on the future survival and fitness of amphibians. We studied whether early nutritional conditions affect the behavioural reaction of fire salamander larvae (Salamandra salamandra) before completion of metamorphosis. Fire salamander larvae reared under rich nutritional conditions were heavier and larger, displayed better body condition overall throughout the first three month of life and metamorphosed earlier compared with larvae raised under poor nutritional conditions. Specifically, we tested whether larvae reared under these different conditions differed with respect to their risk‐taking behaviour and activity. We found no differences in the activity of larvae with respect to their experienced early food conditions. However, larvae reared under poor nutritional conditions hid significantly more often in a risk‐taking test than larvae reared under rich food conditions. This increase in shelter‐seeking behaviour might be an adaptation to reduce the risk of larval drift or an adaptation to compensate for physiological deficits in part by appropriate behavioural reactions. Our results indicate that environmental conditions, such as food availability, may lead to different behavioural strategies.  相似文献   

6.
In order to assess the significance of local adaptation relative to environmental plasticity on the evolution of life history traits, we analysed the possible genetic basis of differences between pond- and stream-breeding fire salamanders (Salamandra salamandra) in Germany. These salamanders typically deposit their larvae in small streams, where they grow until they are sufficiently large to metamorphose. However, some populations in Western Germany use ponds as larval habitat. Because habitat quality of streams differs from that of ponds one expects life history differences in the pond animals, which may result either from a plastic response or through genetic differentiation (i.e. local adaptation). Using a phylogeographical analysis of mitochondrial D-loop sequences, we show that both stream and pond populations in Western Germany are derived from a single lineage that recolonized following the last glaciation. This finding suggests that pond breeding originated very recently. Our studies of habitat quality and metamorphic behaviour of larvae in natural ponds and streams disclosed that pond larvae experience a significantly reduced food supply and greater risk of drying than do stream larvae. Pond larvae metamorphose earlier at the cost of reduced mass. Common-environment experiments with pond and stream larvae show that metamorphic behaviour of pond larvae under limited-food conditions is determined genetically and is not simply a plastic response to the differing habitat conditions. These results show that phenotypic plasticity is less important than local adaptation in explaining differences in ecological diversification within this species and suggests the possibility of rapid evolution of genetic adaptations when new habitats are exploited.  相似文献   

7.
Species that occupy similar habitats are expected to show convergent phenotypes. If habitats are defined by the presence of predators, then traits that modify vulnerability to predation, including predator-induced phenotypic plasticity, should be similar within habitats. We tested this idea using larvae of six syntopic newt species belonging to the two Triturus clades. Behavioural plasticity induced by odonate predators was strongly dissimilar between the two main clades but similar within them. Morphological plasticity was variable among species, even between one pair of closely related species. A predation experiment tested whether differences between clades could be caused by differences in body size. Size-specific vulnerability differed between newts in the small-bodied and large-bodied clades, indicating that similar predators may affect the two clades differently. The results showed both similarity and dissimilarity in predator-induced phenotypic plasticity in syntopic larval newts although theory suggests that divergence is unlikely in such ecologically similar species.  相似文献   

8.
Habitat‐specific selection pressures have been widely recognized, but whether selection favours different personality types in different habitats has rarely been evaluated. This study aimed to test whether personality‐related differences in annual reproductive success differed between two populations of blue tits (Cyanistes caeruleus) occupying different Mediterranean habitats (oakwood and pinewood). We measured exploration and parental provisioning behaviours and used a path analysis to ask how the interplay between these two behavioural traits affected reproductive success in each of these two habitats. We found that blue tits breeding in the pinewood were slow‐exploring compared to blue tits breeding in the oakwood, suggesting the occurrence of personality‐related differences in settlement, or behavioural plasticity in response to habitat. Exploration behaviour and feeding rates were positively associated, suggesting that they affect each other or that there is an environmental factor affecting both traits simultaneously. Finally, fast explorers were favoured in the pinewood, while there was no selection acting on exploration behaviour in the oak habitat. These findings emphasize the importance of integrating habitat selection, plasticity and personality in the study of behavioural evolution.  相似文献   

9.
Reciprocal transplant experiments were completed to test for selection against the mixing of behavioural phenotypes in a desert spider. Most Agelenopsis aperta populations experience low prey abundances and competition for web‐sites that provide shelter from thermal extremes. These conditions favour aggressiveness towards both prey and conspecifics (an ‘arid‐land behavioural phenotype’). The spider also occupies narrow stretches of riparian habitat bordering spring‐fed streams and rivers. Here it is released from competition for prey and foraging sites, but is subject to predation by birds. A less aggressive/more fearful behaviour is selected for in these riparian habitats (a ‘riparian behavioural phenotype’). Previous work with this spider indicates that there is genetic differentiation between arid‐land and riparian populations. However, the degree to which genetic differentiation is achieved may be limited by gene flow. Reciprocal sets of enclosures were established in: (1) a dry evergreen woodland site (arid‐land phenotype) and (2) a neighbouring riparian site (riparian phenotype) in south‐eastern Arizona. Equal numbers of field collected, early instar A. aperta were introduced into native and transplant enclosures in each habitat. After 6 months of site‐imposed selection, survivorship was determined and growth estimates and behavioural trials completed on spiders remaining in the different enclosures. The same behavioural test was subsequently applied to lab‐reared offspring of the spiders surviving the respective selection regimes. Riparian transplants showed both poor survival and retarded growth in the dry woodland habitat when compared with both arid‐land and riparian natives. Arid‐land transplants that survived, however, grew equally well in riparian habitat as did dry woodland and riparian natives. Behavioural assays conducted on test subjects after selection and on their offspring reared in a controlled laboratory environment indicate that phenotypes that were inappropriate to the respective habitats were selected against in the transplant experiments. The frequency distribution of transplant spider behaviour on a continuum from fearful to aggressive was intermediate between that exhibited by respective native riparian and dry woodland spiders. It is concluded that while arid‐land and riparian behavioural ecotypes do exist, directional gene flow of arid‐land phenotypes into riparian habitat limits population subdivision.  相似文献   

10.
Marais E  Chown SL 《Ecology letters》2008,11(10):1027-1036
Few studies have examined the extent to which phenotypic plasticity in a given trait might be influenced by behavioural responses to an environmental cue. Regulatory behaviour might eliminate environmental variation such that little selection for physiological change would take place. Here, to test this Bogert effect on acclimation, we use two life-stages of a kelp fly that inhabit the same habitat, but differ profoundly in their behaviour. We predicted that when denied opportunities for behavioural regulation, mobile, though brachypterous adults would show a performance advantage in most thermal environments following acclimation to their preferred temperature(s). By contrast, in the less mobile larvae, that have a broader thermal preference, beneficial acclimation would be more evident. Ordered factor anova with orthogonal polynomial contrasts revealed that adults recovered faster from chill coma following any one of six short-term temperature treatments if they had been acclimated at low temperature, whilst larvae showed beneficial acclimation.  相似文献   

11.
Habitat degradation not only disrupts habitat‐forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage‐released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement‐stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four‐times better than non‐neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.  相似文献   

12.

Background  

Few surveys have concentrated on studying the adaptive value of phenotypic plasticity within genetically-distinct conspecific ecotypes. Here, we conduct a test to assess the adaptive value that partial phenotypic plasticity may have for survival in the marine gastropod Littorina saxatilis. This species has evolved canalized ecotypes but, nevertheless, the ecotypes show some phenotypic plasticity for the traits under divergent selection between wave-exposed and high-predation habitats.  相似文献   

13.
Phenotypic plasticity allows organisms to cope with environmental variation and may aid in the evolution of novel traits. However, whether phenotypic plasticity is beneficial, or if acclimation responses might be constrained to particular ecotypes is generally poorly explored. Here we test the beneficial acclimation hypothesis (BAH) and its alternatives for desiccation resistance to atmospheric moisture in mesic‐ and xeric‐adapted Glossina species. Highly significant interactions among acclimation and test humidity were detected for water loss rates indicative of significant phenotypic plasticity. Ordered‐factor anova was unable to reject predictions of the ‘drier is better’ acclimation hypothesis in xeric Glossina morsitans and mesic G. austeni. Evidence for the ‘deleterious acclimation hypothesis’ was found for mesic G. palpalis as expected from the moist habitats it typically occupies. By contrast, support for the ‘optimal acclimation hypothesis’ was found in xeric G. pallidipes. Little support for BAH was obtained in the present study, although other hypotheses, which might enhance fitness within the environments these species are typically exposed to, were supported. However, acclimation responses were not necessarily constrained to xeric/mesic ecotypes which might be expected if adaptation to a particular environment arose as a trade‐off between plastic responses and living in a particular habitat. These results highlight the complexity of acclimation responses and suggest an important role for phenotypic plasticity in moderating environmental effects on evolutionary fitness in Glossina.  相似文献   

14.
15.
Understanding how animal personality (consistent between‐individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video‐aided motion tracking. We found that individuals differed consistently in activity and risk‐taking, as well as in behavioural plasticity. In activity, only the large‐brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk‐taking, we found sensitization (decreased risk‐taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour‐specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.  相似文献   

16.
Intra-population variation in behaviour unrelated to sex, size or age exists in a variety of species. The mechanisms behind behavioural diversification have only been partly understood, but density-dependent resource availability may play a crucial role. To explore the potential coexistence of different behavioural types within a natural fish population, we conducted a radio telemetry study, measuring habitat use and swimming activity patterns of pike (Esox lucius), a sit-and-wait predatory fish. Three behavioural types co-occurred in the study lake. While two types of fish only selected vegetated littoral habitats, the third type opportunistically used all habitats and increased its pelagic occurrence in response to decreasing resource biomasses. There were no differences in size, age or lifetime growth between the three behavioural types. However, habitat-opportunistic pike were substantially more active than the other two behavioural types, which is energetically costly. The identical growth rates exhibited by all behavioural types indicate that these higher activity costs of opportunistic behaviour were compensated for by increased prey consumption in the less favourable pelagic habitat resulting in approximately equal fitness of all pike groups. We conclude that behavioural diversification in habitat use and activity reduces intraspecific competition in preferred littoral habitats. This may facilitate the emergence of an ideal free distribution of pike along resource gradients.  相似文献   

17.
A proactive-reactive continuum integrating multiple (i.e., 3+) dimensions of animal behaviour has been reported as a major axis of behavioural differentiation, but its stability along a biological hierarchy from individuals to populations remains speculative. Piscivore and insectivore rainbow trout (Oncorhynchus mykiss) represent closely related ecotypes with strong ecological divergence driven by selection for a large-bodied piscivorous lifestyle with fast juvenile growth vs. selection for smaller adult body size and lower growth associated with an insectivorous diet. To evaluate whether differences in behaviour between ecotypes are consistent with a proactive-reactive axis and consistent along a biological hierarchy, the authors examined variation in emergence time from a shelter, exploration, activity and predator inspection among individuals, populations and ecotypes of juvenile piscivore and insectivore rainbow trout O. mykiss. As expected, the faster-growing piscivore ecotype was more proactive (i.e., shorter emergence time, exploration and predator inspection) than the more reactive insectivore ecotype. This behavioural contrast was partly maintained across populations, although activity differences were most pronounced among populations, rather than emergence time. Insectivore fry showed substantial variation in behavioural expression among individuals within populations; by contrast, piscivores showed highly similar proactive behaviours with significantly lower inter-individual variation in behavioural expression, suggesting intense selection on behaviour supporting their faster growth. This work suggests that piscivore and insectivore O. mykiss broadly differ in behaviour along a proactive vs. reactive continuum, and highlights the greater multidimensionality of behavioural expression within the insectivore ecotype. Contrasting behaviours between ecotypes may result from differential selection for slow vs. fast juvenile growth and associated metabolism, and may contribute to adult trophic specialization.  相似文献   

18.
The development of a phytophagous insect depends on the nutritional characteristics of plants on which it feeds. Offspring from different females, however, may vary in their ability to develop in different host species and therefore females should place their eggs on host plants that result in the highest performance for the insect offspring. Causes underlying the predicted relationships between host selection and offspring performance may be: (1) a genetic association between larval ability to exploit particular hosts and the female insect's host preference; and (2) phenotypic plasticity of larvae that may be due to (a) maternal effects (e.g. differential investment in eggs) or (b) diet. In this work, we analyse the performance (i.e. hatching success and larval size and mortality) of the pine processionary (Thaumetopoea pityocampa) caterpillar developing in Aleppo (Pinus halepensis) or maritime (Pinus pinaster) pines. Larvae of this moth species do not move from the individual pine selected by the mother for oviposition. By means of cross-fostering experiments of eggs batches and silk nests of larvae between these two pine species, we explored whether phenotypic plasticity of offspring traits or genetic correlations between mother and offspring traits account for variation in developmental characteristics of caterpillars. Our results showed that females preferentially selected Aleppo pine for oviposition. Moreover, the offspring had the highest probability of survival and reached a larger body size in this pine species independently of whether or not batches were experimentally cross-fostered. Notably, the interaction between identity of donor and receiver pine species of larvae nests explained a significant proportion of variance of larval size and mortality, suggesting a role of diet-induced phenotypic plasticity of the hatchlings. These results suggest that both female selection of the more appropriate pine species and phenotypic plasticity of larva explain the performance of pine processionary caterpillars.  相似文献   

19.
Anopheline larval habitats associated with a swamp, were examined in a highland area (1910 m elevation) of western Kenya. A significant association was found between occurrence of Anopheles gambiae Giles s.s. (Diptera: Culicidae) larvae and two factors, habitat size and vegetation type. Over 80% of An. gambiae s.s. larvae were found in small isolated pools, characterized by short plants, occurring in both swamp margins and roadside ditches. However, Anopheles gambiae s.s. was not found in habitats marked by papyrus and floating plants. The larval habitat of An. gambiae s.s. was characterized by warmer daytime temperatures of water, which were significantly affected by habitat size and plant size. The density of indoor resting An. gambiae s.s. was 0.22 per house and negatively associated with distance from the swamp. These results indicate that the practice of swamp cultivation, in populated areas of the African highlands, increases availability and enhances habitat conditions for the malaria vector.  相似文献   

20.
Abstract.  1. An organism's growth parameters are expected to depend on environmental constraints, such as predation risk and food supply. However, antipredator responses, food intake, and thus growth of an animal may be mediated by behavioural traits, which are likely to differ among developmental stages. In this study, it was investigated how the relationship between growth and behavioural antipredator responses changes during ontogeny in the time-constrained dragonfly species Libellula depressa , and which factors influenced specific behavioural decisions at different points in ontogeny.
2. The results revealed that behavioural strategies differed between larval developmental sages, depending on associations between larval growth, food supply, and predation risk. Early in ontogeny, faster development was correlated with high larval activity and high food supply. This resulted in high activity levels under high food conditions irrespectively of predator presence, and under low food supply in predator absence only. In the intermediate stage of development, all larvae displayed a high activity level, which was correlated in general with fast development. However, growth later in ontogeny was not only influenced by the activity level, but also by predator presence and food supply, with larvae reared under high food supply and/or in presence of predators attaining a higher final mass. Thus, not only the way in which larval growth parameters and behaviour are related changed during development, but also whether the factors influenced larval growth and behaviour. Once the larvae reached the ultimate stage of development, in which they overwinter, behavioural patterns observed were consistent with model predictions.
3. It is advocated that behavioural plasticity of prey organisms in different developmental stages should be analysed in the context of associated growth variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号