首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
When juvenile praying mantids (Tenodera sinensis)were exposed to unpalatable prey (the milkweed bug Oncopeltus fasciatus),they attacked, sampled, and then usually rejected the prey. About 70% of the handling time was spent feeding. When offered a second milkweed bug, the mantids usually attacked the prey. However, the overall time required for the mantids to sample, recognize, and then reject the unpalatable prey decreased by half. The proportion of handling time that was spent feeding remained the same as in the first encounter. In contrast, when the second prey individuals encountered by mantids were Drosophila melanogaster,the flies were completely consumed and the proportion of handling time that was spent feeding significantly increased. When praying mantids were exposed to the milkweed bugs for the first time, up to 33% of the bugs survived attack by the mantids. Survival of milkweed bugs increased to 55% when mantids had been previously exposed to the bugs. In contrast, flies that were caught never survived.  相似文献   

2.
Conservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non-pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well-defended arthropods, and their potential use as natural enemies of several pests in South American crops.  相似文献   

3.
A large number of studies on both animals and humans have demonstratedthat learning is influenced by context or secondary cues thatare present when an association is formed. Few studies, however,have examined the functional value of attending to context.We first demonstrated that jumping spiders, Phidippus princeps,could be trained to avoid aposematic, distasteful milkweed bugs,Oncopeltus fasciatus. Spiders readily attacked bugs on firstexposure but were significantly less likely to do so after eighttrials, although they subsequently attacked and ate crickets.Spiders exposed to nontoxic milkweed bugs reared on sunflowerseeds did not show the same decline in attack rate. We nextexamined the effects of secondary contextual cues on spiderlearning by training spiders to avoid milkweed bugs in one oftwo environments. When spiders were tested in an environmentdifferent from the one in which they were trained, attack ratesincreased, and spiders no longer demonstrated retention of theassociation. Spiders tested in the same environment in whichthey were trained continued to avoid attacking the bugs. Theseresults have potential consequences for the evolution of bothpredator and prey and point to the importance of studying context-dependentlearning.  相似文献   

4.
Many prey species change their antipredator defence during ontogeny, which may be connected to different potential predators over the life cycle of the prey. To test this hypothesis, we compared reactions of two predator taxa – spiders and birds – to larvae and adults of two invasive true bug species, Oxycarenus hyalinipennis and Oxycarenus lavaterae (Heteroptera: Oxycarenidae) with life-stage-specific chemical defence mechanisms. The reactions to larvae and adults of both true bug species strikingly differed between the two predator taxa. The spiders were deterred by the defences of adult bugs, but the larval defences were ineffective against them. By contrast, birds attacked the larvae considerably less often than the adult bugs. The results indicate a predator-specific ontogenetic change in defence effectiveness of both Oxycarenus species. The change in defence is likely linked to the life-stage-specific composition of secretions in both species: whereas secretions of larvae are dominated by unsaturated aldehydes, secretions of adults are rich in terpenoids, which probably serve dual function of defensive chemicals and pheromones. Our results highlight the variation in defence between different life stages and the importance of testing responses of different types of predators.  相似文献   

5.
Studies of aposematism are mostly focused on visual aspects of warning signalization and based on experiments with avian predators. This study presents results of experiments with an arthropod predator, a jumping spider Evarcha arcuata (Araneae: Salticidae) and olfactory (i.e., noncontact chemical) aposematic signals. Spiders were presented with chemically protected firebug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). After acquiring the negative experience with the bugs, the spiders were offered a choice between the firebug olfactory signal and a scentless control. Spiders actively avoided the firebug signal, showing that they are able to recognize an unprofitable prey by means of olfactory chemoreception. The results show that olfactory signals alone may function as effective means of aposematic signalization to spiders.  相似文献   

6.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

7.
Spiders are common generalist predators, and understanding their potential in biological control is important for the development of integrated pest management programs. In this study, predation by three groups of spiders on the mirid bug Stenotus rubrovittatus (Hemiptera: Miridae) in rice paddies was investigated using DNA-based gut-content analysis. A laboratory feeding study revealed that the detection half-lives of bug DNA in the spider gut at 25 °C was 3.4 days for Lycosidae and 1.5 days for Tetragnathidae. Individual spider predation on the mirid bug was investigated by detecting DNA of prey in field-collected spiders. In total, 1199 spiders were assayed from three spider groups: Pirata subpiraticus (Lycosidae), Tetragnatha spp. (Tetra-gnathidae), and Pachygnatha clercki (Tetra-gnathidae), which each differ in their preferred microhabitat as well as their predatory habits. Detection rates of prey DNA in spiders increased significantly with the density of prey across all spider groups. P. subpiraticus and Tetragnatha spp. predation showed a better fit to a saturated response curve to increasing prey density, while P. clercki showed a simple linear relationship with prey density. Densities of alternative prey species did not affect the detection rates of mirids. These results suggest that predation on pests by generalist predators in an agroecosystem is affected not only by prey abundance but also by predator preference for specific prey. Predator preference is therefore an important factor to consider when estimating the role of natural enemies as biological control agents.  相似文献   

8.
Assassin bugs from the genus Stenolemus (Heteroptera, Reduviidae) are predators of web-building spiders. However, despite their fascinating lifestyle, little is known about how these insects hunt and catch their dangerous prey. Here we characterise in detail the behaviour adopted by Stenolemus bituberus (Stål) during encounters with web-building spiders, this being an important step toward understanding this species’ predatory strategy. These bugs employed two distinct predatory tactics, “stalking” and “luring”. When stalking their prey, bugs slowly approached the prey spider until within striking range, severing and stretching threads of silk that were in the way. When luring their prey, bugs attracted the resident spider by plucking and stretching the silk with their legs, generating vibrations in the web. Spiders approached the luring bug and were attacked when within range. The luring tactic of S. bituberus appears to exploit the tendency of spiders to approach the source of vibrations in the web, such as might be generated by struggling prey.  相似文献   

9.
Antipredator defense of herbivorous insects often relies on the potential toxicity of defensive chemicals sequestered from their host plants. The colorful Lygaeinae (Heteroptera: Lygaeidae) store a concentrated mixture of toxic cardenolides (cardiac glycosides) in specialized storage compartments of the bugs' integument, from which they are released upon attack. Larvae and adults of the large milkweed bug Oncopeltus fasciatus (Heteroptera: Lygaeinae) are specialized to feed on cardenolide‐containing milkweeds in the plant genus Asclepias and display a conspicuous red and black colorations. To investigate whether O. fasciatus gained improved protection by feeding on a toxic host plant (Asclepias syriaca), compared to a nontoxic alternative (sunflower seeds), we fed nymphs and adults of O. fasciatus to the golden orb‐weaver Nephila senegalensis. While visually oriented vertebrates, such as avian predators, have been intensively investigated for their reaction to defensive compounds and aposematic coloration, less attention has been paid to invertebrate predators. Their different perceptual abilities can provide important opportunities for testing hypotheses on warning coloration and chemical defenses. The predation trials showed that the bugs fed on Asclepias were significantly less likely to be killed than the bugs reared on a cardenolide‐free diet. This suggests that sequestered cardenolides in O. fasciatus nymphs and adults represent a significant fitness advantage on an individual level against this invertebrate predator. Yet, when testing for avoidance learning in the spiders, negative experience did not change the way how similar prey was attacked at the next encounter. In this case, visual or chemical aposematism thus does not seem to matter for predator learning.  相似文献   

10.
Death feigning is considered to be an adaptive antipredator behaviour. Previous studies on Tribolium castaneum have shown that prey which death feign have a fitness advantage over those that do not when using a jumping spider as the predator. Whether these effects are repeatable across species or whether they can be seen in nature is, however, unknown. Therefore, the present study involved two experiments: (a) divergent artificial selection for the duration of death feigning using a related species T. freemani as prey and a predatory bug as predator, demonstrating that previous results are repeatable across both prey and predator species, and (b) comparison of the death‐feigning duration of T. castaneum populations collected from field sites with and without predatory bugs. In the first experiment, T. freemani adults from established selection regimes with longer durations of death feigning had higher survival rates and longer latency to being preyed on when they were placed with predatory bugs than the adults from regimes selected for shorter durations of death feigning. As a result, the adaptive significance of death‐feigning behaviour was demonstrated in another prey–predator system. In the second experiment, wild T. castaneum beetles from populations with predators feigned death longer than wild beetles from predator‐free populations. Combining the results from these two experiments with those from previous studies provided strong evidence that predators drive the evolution of longer death feigning.  相似文献   

11.
Araneophagic behavior of an Emesinae assassin bug, Gardena brevicollis Stål (Hemiptera: Reduviidae) was observed in the field. The bug invaded a web of Acusilas coccineus Simon (Araneae: Araneidae) spiderlings and hunted five juvenile spiders. The bug showed stalking tactics to prey on spiders, whereas luring tactics, which have been reported in other Emesinae bugs, were not observed. To the best of my knowledge, the present study is the first report of araneophagy in the genus Gardena and the first report of araneophagic behavior in East Asian assassin bugs.  相似文献   

12.
Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods.  相似文献   

13.
The influence of light and habitat structure on the predation of Culex quinquefasciatus larvae by the common heteropteran water bug, Diplonychus (=Sphaerodema) annulatus, D. rusticus and Anisops bouvieri was assessed in the laboratory. It was revealed that water bugs predate more in presence of light than in dark conditions. While A. bouvieri consumed more prey in structured conditions, D. annulatus and D. rusticus consumed more prey in open conditions. The selection of prey size as well as the respective numbers varied between predators and treatments significantly. Prey vulnerability (PV), an indicator of predatory efficiency, was highest for D. annulatus, moderate for D. rusticus and low for A. bouvieri. Prey consumption and PV values under different treatment conditions indicate that for belostomatid water bugs D. annulatus and D. rusticus, the order of prey consumption under different habitat and light/dark combinations is light open > dark open > light vegetated > dark vegetated. In the case of the backswimmer, A. bouvieri, the order of prey consumption appeared to be light structured > dark structured > light open > dark open. These findings were consistent with resource‐partitioning by water bug species sharing the same guild. If the observed results are extended to natural settings the efficiency of these predators in controlling mosquito populations will vary with the structural complexity of habitats and the intensity of light.  相似文献   

14.
《Animal behaviour》2002,63(2):277-284
The nymphs of the West African assassin bugs Paredocla and Acanthaspis spp. disguise themselves with a cover of dust, sand and soil particles (‘dust coat’) and additionally pile a ‘backpack’ of larger objects, such as empty prey corpses and plant parts, on their abdomen. We investigated the effect of this conspicuous camouflage in interactions of the bugs with ants, their main prey, as well as in encounters with their own predators. Experiments with three ant species showed that the dust coat impedes chemical and tactile recognition of the nymphs by ant workers and thus may serve to increase their hunting success. The backpack appeared to play only a minor role in this context. In arena experiments with three potential predators (spiders, geckos and centipedes), camouflaged nymphs were significantly more likely to survive than denuded bugs. Here the observed effect was mainly attributable to the backpack, which enhanced the concealing effect of the dust coat and confused visually orienting predators. In addition, in the case of an attack, it could be shed to distract the enemy while the bug escaped, thus functioning in a similar manner as a lizard’s tail.  相似文献   

15.
Aposematism involves predators learning conspicuous signals of defended prey. However, prey species utilize a wide range of chemical (or physical) defenses, which are not likely to be equally aversive to all predators. Aposematism may therefore only be effective against a physiologically sensitive subset of potential predators, and this can only be identified through behavioral testing. We studied the emerging model organism Tectocoris diophthalmus (Heteroptera: Scutelleridae), an aposematically colored but weakly defended shieldback stinkbug, to test the efficacy of its defenses against a suite of predator types. We predicted the bugs' defenses would be ineffectual against both experienced and naïve birds but aversive to predaceous insects. Surprisingly, the opposite pattern was found. Both habituated wild passerines and naïve chickens avoided the bugs, the chickens after only one or two encounters. To avian predators, T. diophthalmus is aposematic. However, praying mantids showed no repellency, aversion, or toxicity associated with adult or juvenile bugs after multiple trials. Comparison with prior studies on mantids using bugs with chemically similar but more concentrated defenses underscores the importance of dose in addition to chemical identity in the efficacy of chemical defenses. Our results also emphasize the importance of behavioral testing with multiple ecologically relevant predators to understand selective pressures shaping aposematic signals and chemical defenses.  相似文献   

16.
Both theoretical and laboratory research suggests that many prey animals should live in a solitary, dispersed distribution unless they lack repellent defences such as toxins, venoms and stings. Chemically defended prey may, by contrast, benefit substantially from aggregation because spatial localization may cause rapid predator satiation on prey toxins, protecting many individuals from attack. If repellent defences promote aggregation of prey, they also provide opportunities for new social interactions; hence the consequences of defence may be far reaching for the behavioural biology of the animal species. There is an absence of field data to support predictions about the relative costs and benefits of aggregation. We show here for the first time using wild predators that edible, undefended artificial prey do indeed suffer heightened death rates if they are aggregated; whereas chemically defended prey may benefit substantially by grouping. We argue that since many chemical defences are costly to prey, aggregation may be favoured because it makes expensive defences much more effective, and perhaps allows grouped individuals to invest less in chemical defences.  相似文献   

17.
Summary Prey capture rate, food consumption, and diet composition of all developmental stages of the funnelweb spider Agelena limbata were estimated in woody and open habitats by a sight-count method. Prey availability was evaluated on the basis of two indices, i.e. the ratios of daily food consumption to dry weight of predator and to daily standard metabolic rate. These indices varied seasonally and between instars in this spider. Comparison of these indices between arthropod predators suggests that A. limbata live under conditions of relatively limited food supply. In the open habitat, the spiders reduced foraging activities to avoid heat stress at midday in summer because the sheet web was exposed to the direct rays of the sun and its temperature exceeded 40°C. The daily food consumption of adult spiders in the open habitat was about half of that in the woody habitat. The lower rate of energy intake of spiders in the open habitat may cause the observed smaller size of adults and lower fecundity. A. limbata captured a great range of prey comprising ten orders of arthropods and ate chemically defended insects, e.g. stink bugs, lady beetles, and ants which were rejected by many spiders. This generalistic foraging may be associated with limited and heterogeneous food supply in this spider.  相似文献   

18.
Food web studies often examine density and behaviourally mediated effects of predators on herbivores, but are less likely to assess the plant targeted by the herbivore. We conducted a study that incorporated four trophic levels examining the effect of two generalist predators (damsel bugs, Nabis kinbergii Reuter; and lynx spiders, Oxyopes molarius L. Koch) on damage to cotton bolls caused by green mirids (Creontiades dilutus (Stål)). First we tested whether lynx spiders and damsel bugs could control mirid numbers and cotton boll damage in field cages. We found that in cages containing mirids and only lynx spiders, lynx spiders reduced both mirid numbers and boll damage. However, in cages which contained mirids and both predators (lynx spiders and damsel bugs) only mirid numbers were reduced. To explain the negative effect of damsel bugs on boll damage, we examined the interactions between lynx spiders, damsel bugs and mirids. We found that lynx spiders were better mirid predators than damsel bugs, and that lynx spiders attacked damsel bugs, but not vice versa. Behaviourally, mirids responded to increasing predator pressure regardless of whether the predators were lynx spiders or damsel bugs. However, damsel bugs seemed to alter the behaviour of lynx spiders because in their presence, a higher proportion of lynx spiders moved to the top of the plant, towards the damsel bugs but away from the bolls found lower on the plant. These results suggest that the most likely explanation for the increase in boll damage in the presence of damsel bugs was that lynx spiders moved to the top of the plant in the presence of damsel bugs, which then exposed the bolls lower down on the plant to mirid attack. This work emphasizes the importance of behaviourally mediated effects in food webs extending over four trophic levels.  相似文献   

19.
The cotton aphid, Aphis gossypii Glover, predation rate of convergent lady beetle, Hippodamia convergens Guerin‐Meneville, was determined by assigning a single predator randomly to each of four prey density treatments in the laboratory. Prey densities included 25, 50, 100, and 200 aphids per Petri dish arena. Predation response was recorded at 1, 4, 8, 16, 24, and 48 h after assigning predators to their prey treatments. Rate of consumption increased through time, with all 25 aphids consumed during the first 4 h of the experiment. At the highest density, adult lady beetle consumed on average 49, 99, 131, 163, 183, and 200 aphids within 1, 4, 8, 16, 24 and 48 h, respectively. Predators showed a curvilinear feeding response in relation to total available time, indicating that convergent lady beetles have the potential to suppress larger populations of aphids through continuous feeding by regulating their predation efficiency during feeding. The analysis of age‐specific mortality in absence of prey revealed that lady beetles could survive for an extended period of time (more than 2 weeks) without prey. The ability of a predator to survive without prey delays or prevents the rebound of pest populations that is a significant factor in natural biological control. A two‐year field sampling of 10 cotton arthropod predator species showed that spiders (27%) were the most dominant foliage dwelling predators in the Texas High Plains cotton followed by convergent lady beetles (23.5%), hooded beetles (13.5%), minute pirate bugs (11%), green lacewings (9.5%), bigeyed bugs (7.5%), scymnus beetles (3%), soft‐winged flower beetles (2%), damsel bugs (1.5%), and assassin bugs (1.5%). A field cage study showed that one H. convergens adult per plant released at prey density of one aphid per leaf kept the aphid population below economic threshold for the entire growing season.  相似文献   

20.
Ant-like appearance (myrmecomorphy) has evolved >70 times in insects and spiders, accounting for >2,000 species of myrmecomorphic arthropods. Most myrmecomorphic spiders are considered to be Batesian mimics; that is, a palatable spider avoids predation through resemblance to an unpalatable ant-although this presumption has been tested in relatively few cases. Here we explicitly examined the extent to which Peckhamia picata (Salticidae), a North American ant-mimicking jumping spider, is protected from four species of jumping spider predators, relative to nonmimetic salticids and model ants. In addition, we conducted focused behavioral observations on one salticid predator, Thiodina puerpera, to determine the point at which the predators' behaviors toward model, mimic, and nonmimic diverge. We also examined the behaviors of Peckhamia in the presence of Thiodina. We found that mimetic jumping spiders were consumed less than a third as often as nonmimetic jumping spiders, suggesting that Peckhamia does indeed gain protection as a result of its resemblance to ants, and so can be considered a Batesian mimic. Furthermore, our focal predator did not consume any ant-mimicking spiders, and seemed to categorize Peckhamia with its model ant early in the hunting sequence. Such early determination of prey versus nonprey may be the result of speed-accuracy trade-offs in predator decision-making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号