首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Future battlegrounds for conservation under global change   总被引:2,自引:0,他引:2  
Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change.  相似文献   

2.
Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be traveled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land area and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30 × 30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate.  相似文献   

3.
Climate change threatens European conservation areas   总被引:4,自引:0,他引:4  
Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58?±?2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63?±?2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P?相似文献   

4.

Aim

Comprehensive biodiversity protection necessitates the consideration of multiple indexes of diversity, and how the distribution patterns of priority areas may shift under climate change. Galliformes is a globally endangered avian order vulnerable to climate change that provide an important indicator for wildlife conservation effectiveness. Here, we identified priority areas for conserving Galliformes taxonomic, phylogenetic, and functional diversity in China and their spatial dynamics subject to climate change, and examined how well existing protected areas align with current and future priority areas.

Location

China.

Methods

We applied species distribution modelling and Zonation algorithms to identify conservation priority area dynamics for 47 galliform species across three biodiversity indexes subject to three future climate change scenarios to 2050s and 2070s. We overlaid these identified priority areas onto existing national nature reserves and national parks to assess and project their effectiveness.

Results

Current priority areas proved spatially incongruent between indexes, with an optimal area overlap comprising just 10.3% of China's land area, lying largely outside of existing protected areas. Furthermore, over 80% of modelled optimal priority areas currently lacked formal conservation status. Future priority areas will shift substantially under climate change, to an extent dependent on greenhouse gas emission scenarios. Nevertheless, we identified five large regions where optimal Galliformes diversity indexes should remain stable under all scenarios, thus providing potential climatic refugia, if protected from human encroachment.

Main Conclusions

The current deficits we identified for Galliformes protection in China resonate with a broader need for hierarchical conservation strategic planning across regions and ecosystems to ensure long-term biodiversity protection, accommodating for climate change.  相似文献   

5.
Protected areas are important in conserving the rapid decline of biodiversity in the Anthropocene. Yet uncertainty persists whether protected areas will continue to meet conservation goals if climate change causes community or ecosystem shifts. Previous research has proven equivocal with some studies finding protected areas fail conservation objectives and others finding objectives are largely met. The effectiveness of protected area systems within tropical Asia and for insects are particularly under-studied. Using species distribution modeling of 68 butterfly species (15,346 locality records), we carried out an evaluation of the effectiveness of protected areas in Hong Kong, one of the most well-covered (40% land area) protected area systems in the Asian tropics, and projected how the ability to protect biodiversity would change under different climate change scenarios and different conservation target schemes. Under climate change, 15–37% of the modeled species in 2000 were projected to become extirpated by 2050. Under all conservation target schemes, the proportion of species unprotected increased or leveled, by up to as much as 7%. If buffer grids were considered as unprotected, the increase in these gap species was much greater, by up to as much as 22%. These results together indicate that under climate change, the effectiveness of protected areas for butterflies in Hong Kong is likely to decrease despite the territory’s relatively high proportion of protected area coverage. We also highlight here the importance of the fortification of partly protected areas in mediating biodiversity loss under the impacts of global change.  相似文献   

6.
Current rates of climate change are unprecedented, and biological responses to these changes have also been rapid at the levels of ecosystems, communities, and species. Most research on climate change effects on biodiversity has concentrated on the terrestrial realm, and considerable changes in terrestrial biodiversity and species’ distributions have already been detected in response to climate change. The studies that have considered organisms in the freshwater realm have also shown that freshwater biodiversity is highly vulnerable to climate change, with extinction rates and extirpations of freshwater species matching or exceeding those suggested for better‐known terrestrial taxa. There is some evidence that freshwater species have exhibited range shifts in response to climate change in the last millennia, centuries, and decades. However, the effects are typically species‐specific, with cold‐water organisms being generally negatively affected and warm‐water organisms positively affected. However, detected range shifts are based on findings from a relatively low number of taxonomic groups, samples from few freshwater ecosystems, and few regions. The lack of a wider knowledge hinders predictions of the responses of much of freshwater biodiversity to climate change and other major anthropogenic stressors. Due to the lack of detailed distributional information for most freshwater taxonomic groups and the absence of distribution‐climate models, future studies should aim at furthering our knowledge about these aspects of the ecology of freshwater organisms. Such information is not only important with regard to the basic ecological issue of predicting the responses of freshwater species to climate variables, but also when assessing the applied issue of the capacity of protected areas to accommodate future changes in the distributions of freshwater species. This is a huge challenge, because most current protected areas have not been delineated based on the requirements of freshwater organisms. Thus, the requirements of freshwater organisms should be taken into account in the future delineation of protected areas and in the estimation of the degree to which protected areas accommodate freshwater biodiversity in the changing climate and associated environmental changes.  相似文献   

7.
Vulnerability of South African animal taxa to climate change   总被引:7,自引:1,他引:6  
The responsiveness of South African fauna to climate change events is poorly documented and not routinely incorporated into regional conservation planning. We model the likely range alterations of a representative suite of 179 animal species to climate change brought about by the doubling of CO2 concentrations. This scenario is expected to cause a mean temperature increase of 2 °C. We applied a multivariate climate envelope approach and evaluated model performance using the most comprehensive bird data set. The results were encouraging, although model performance was inconsistent in the eastern coastal area of the country. The levels of climate change induced impacts on species ranges varied from little impact to local extinction. Some 17% of species expanded their ranges, 78% displayed range contraction (4–98%), 3% showed no response and 2% became locally extinct. The majority of range shifts (41%) were in an easterly direction, reflecting the east–west aridity gradient across the country. Species losses were highest in the west. Substantially smaller westward shifts were present in some eastern species. This may reflect a response to the strong altitudinal gradient in this region, or may be a model artifact. Species range change (composite measure reflecting range contraction and displacement) identified selected species that could act as climate change indicator taxa. Red‐data and vulnerable species showed similar responses but were more likely to display range change (58% vs. 43% for all species). Predictions suggest that the flagship, Kruger National Park conservation area may loose up to 66% of the species included in this analysis. This highlights the extent of the predicted range shifts, and indicates why conflicts between conservation and other land uses are likely to escalate under conditions of climate change.  相似文献   

8.
Assumptions about factors such as climate in shaping species'' realized and potential distributions underlie much of conservation planning and wildlife management. Climate and climatic change lead to shifts in species distributions through both direct and indirect ecological pressures. Distributional shifts may be particularly important if range overlap is altered between interacting species, or between species and protected areas. The cattle family (Bovidae) represents a culturally, economically, and ecologically important taxon that occupies many of the world''s rangelands. In contemporary North America, five wild bovid species inhabit deserts, prairies, mountains, and tundra from Mexico to Greenland. Here, we aim to understand how future climate change will modify environmental characteristics associated with North American bovid species relative to the distribution of extant protected areas. We fit species distribution models for each species to climate, topography, and land cover data using observations from a citizen science dataset. We then projected modeled distributions to the end of the 21st century for each bovid species under two scenarios of anticipated climate change. Modeling results suggest that suitable habitat will shift inconsistently across species and that such shifts will lead to species‐specific variation in overlap between potential habitat and existing protected areas. Furthermore, projected overlap with protected areas was sensitive to the warming scenario under consideration, with diminished realized protected area under greater warming. Conservation priorities and designation of new protected areas should account for ecological consequences of climate change.  相似文献   

9.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

10.
While the protected area (PA) covers >15% of the planet's terrestrial land area and continues to expand, factors determining its effectiveness in conserving endangered species are being debated. We investigated the links between direct anthropogenic pressures, socioeconomic settings, and the coverage of vertebrate taxa by China's PA network, and indicated that high socioeconomic status and low levels of human pressure correlate with high species coverage, with threatened mammals more effectively conserved than reptiles or amphibians. Positive links between conservation outcomes and socioeconomic progress appear linked to local livelihood improvements triggering positive perceptions of local PAs—aided further by ecological compensation and tourism schemes introduced in wealthy areas and reinforced by continued positive conservation outcomes. Socioeconomic development of China's less developed regions might assist regional PA efficiency and achievement of the Kunming-Montreal Global Biodiversity Framework, while also addressing potential shortcomings from an insufficient past focus on socioeconomic impacts for biodiversity conservation.  相似文献   

11.
金宇  周可新  高吉喜  穆少杰  张小华 《生态学报》2016,36(23):7702-7712
准确可靠地识别国家重点保护陆生脊椎动物物种的优先保护区,是生物多样性保护的热点问题之一。采用随机森林(random forests)模型,基于12个环境变量,对中国263种国家重点保护陆生脊椎动物建模,并预测各个物种在背景点的适生概率,迭加计算得到国家重点保护陆生脊椎动物物种的生境适宜性指数。此外,基于对生境适宜性指数的空间自相关分析,识别和确定国家重点保护陆生脊椎动物物种优先保护区,并对优先保护区目前的被保护情况进行分析。结果表明,国家重点保护陆生脊椎动物物种的优先保护区的面积为103.16万km~2,约占我国国土面积的10.90%。优先保护区主要分布在我国的西部地区,包括西南地区的秦岭-大巴山山区、云南省与印度及缅甸的交界地区、武陵山山区、喜马拉雅山-横断山脉山区、阿尔泰山脉山区、天山山脉山区、昆仑山山脉山区;东北的大、小兴安岭、东北-华南沿海地区及长江中下游地区有少量分布。优先保护区中被保护的面积为50.40万km~2,占优先保护区总面积的48.86%,保护率偏低,未被充分保护。利用系统聚类分析,将未被保护的优先保护区划分成3种优先保护顺序,以期为相关部门的决策提供科学依据,更好地保护生物多样性。  相似文献   

12.
The Convention on Biological Diversity requires that member nations establish protected area networks that are representative of the country's biodiversity. The identification of priority sites to achieve outstanding representation targets is typically accomplished through formal conservation assessments. However, representation in conservation assessments or gap analyses has largely been interpreted based on a static view of biodiversity. In a rapidly changing climate, the speed of changes in biodiversity distribution and abundance is causing us to rethink the viability of this approach. Here we describe three explicit strategies for climate change adaptation as part of national conservation assessments: conserving the geophysical stage, identifying and protecting climate refugia, and promoting cross‐environment connectivity. We demonstrate how these three approaches were integrated into a national terrestrial conservation assessment for Papua New Guinea, one of the most biodiverse countries on earth. Protected areas identified based on representing geophysical diversity were able to capture over 90% of the diversity in vegetation communities, suggesting they could help protect representative biodiversity regardless of changes in the distribution of species and communities. By including climate change refugia as part of the national conservation assessment, it was possible to substantially reduce the amount of environmental change expected to be experienced within protected areas, without increasing the overall cost of the protected area network. Explicitly considering environmental heterogeneity between adjacent areas resulted in protected area networks with over 40% more internal environmental connectivity. These three climate change adaptation strategies represent defensible ways to guide national conservation priority given the uncertainty that currently exists in our ability to predict climate changes and their impacts. Importantly, they are also consistent with data and expertise typically available during national conservation assessments, including in developing nations. This means that in the vast majority of countries, these strategies could be implemented immediately.  相似文献   

13.
Primates are facing an impending extinction crisis, driven by extensive habitat loss, land use change and hunting. Climate change is an additional threat, which alone or in combination with other drivers, may severely impact those taxa unable to track suitable environmental conditions. Here, we investigate the extent of climate and land use/cover (LUC) change‐related risks for primates. We employed an analytical approach to objectively select a subset of climate scenarios, for which we then calculated changes in climatic and LUC conditions for 2050 across primate ranges (N = 426 species) under a best‐case scenario and a worst‐case scenario. Generalized linear models were used to examine whether these changes varied according to region, conservation status, range extent and dominant habitat. Finally, we reclassified primate ranges based on different magnitudes of maximum temperature change, and quantified the proportion of ranges overall and of primate hotspots in particular that are likely to be exposed to extreme temperature increases. We found that, under the worst‐case scenario, 74% of Neotropical forest‐dwelling primates are likely to be exposed to maximum temperature increases up to 7°C. In contrast, 38% of Malagasy savanna primates will experience less pronounced warming of up to 3.5°C. About one quarter of Asian and African primates will face up to 50% crop expansion within their range. Primary land (undisturbed habitat) is expected to disappear across species' ranges, whereas secondary land (disturbed habitat) will increase by up to 98%. With 86% of primate ranges likely to be exposed to maximum temperature increases >3°C, primate hotspots in the Neotropics are expected to be particularly vulnerable. Our study highlights the fundamental exposure risk of a large percentage of primate ranges to predicted climate and LUC changes. Importantly, our findings underscore the urgency with which climate change mitigation measures need to be implemented to avert primate extinctions on an unprecedented scale.  相似文献   

14.
The extent to which climate change might diminish the efficacy of protected areas is one of the most pressing conservation questions. Many projections suggest that climate‐driven species distribution shifts will leave protected areas impoverished and species inadequately protected while other evidence suggests that intact ecosystems within protected areas will be resilient to change. Here, we tackle this problem empirically. We show how recent changes in distribution of 139 Tanzanian savannah bird species are linked to climate change, protected area status and land degradation. We provide the first evidence of climate‐driven range shifts for an African bird community. Our results suggest that the continued maintenance of existing protected areas is an appropriate conservation response to the challenge of climate and environmental change.  相似文献   

15.
Aim Species distribution models are a potentially powerful tool for predicting the effects of global change on species distributions and the resulting extinction risks. Distribution models rely on relationships between species occurrences and climate and may thus be highly sensitive to georeferencing errors in collection records. Most errors will not be caught using standard data filters. Here we assess the impacts of georeferencing errors and the importance of improved data filtering for estimates of the elevational distributions, habitat areas and predicted relative extinction risks due to climate change of nearly 1000 Neotropical plant species. Location The Amazon basin and tropical Andes, South America. Methods We model the elevational distributions, or ‘envelopes’, of 932 Amazonian and Andean plant species from 35 families after performing standard data filtering, and again using only data that have passed through an additional layer of data filtering. We test for agreement in the elevations recorded with the collection and the elevation inferred from a digital elevation model (DEM) at the collection coordinates. From each dataset we estimate species range areas and extinction risks due to the changes in habitat area caused by a 4.5 °C increase in temperature. Results Amazonian and Andean plant species have a median elevational range of 717 m. Using only standard data filters inflates range limits by a median of 433 m (55%). This is equivalent to overestimating the temperature tolerances of species by over 3 °C – only slightly less than the entire regional temperature change predicted over the next 50–100 years. Georeferencing errors tend to cause overestimates in the amount of climatically suitable habitat available to species and underestimates in species extinction risks due to global warming. Georeferencing error artefacts are sometimes so great that accurately predicting whether species habitat areas will decrease or increase under global warming is impossible. The drawback of additional data filtering is large decreases in the number of species modelled, with Andean species being disproportionately eliminated. Main conclusions Even with rigorous data filters, distribution models will mischaracterize the climatic conditions under which species occur due to errors in the collection data. These errors affect predictions of the effects of climate change on species ranges and biodiversity, and are particularly problematic in mountainous areas. Additional data filtering reduces georeferencing errors but eliminates many species due to a lack of sufficient ‘clean’ data, thereby limiting our ability to predict the effects of climate change in many ecologically important and sensitive regions such as the Andes Biodiversity Hotspot.  相似文献   

16.
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent‐wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México—NAM) to the projected end‐of‐century climate (2071–2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land‐cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land‐cover types outside the current network of NAM protected areas.  相似文献   

17.
Assisted colonization is a form of conservation translocation which introduces species at risk from extinction to new habitats, beyond their current range, in anticipation of more suitable conditions. Identifying which species, communities and ecosystems may benefit most from assisted colonization in coming decades is a key goal for conservation. Climate change is expected to lead to the loss or movement of suitable habitat for a range of species and anticipating which can be effectively conserved through assisted colonization is critical. Here, we identify a series of scenarios that may predispose terrestrial species to the need for assisted colonization in order to reduce extinction risk resulting from anthropogenic climate change and assemble a list of traits commonly associated with at‐risk species. These traits may help to provide broad‐scale guidance on how to select species to target for assisted colonization as a conservation management response to climate change. We also identify six key themes associated with successful conservation translocations including recipient site selection and preparation, a clear understanding of species biology and ecology, and taking lessons from invasive species research.  相似文献   

18.
Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4 °C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2 °C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.  相似文献   

19.
Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world''s 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.  相似文献   

20.
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities'' long-term survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号