首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
单套染色体组在泽蛙雌核单倍体发育中的作用   总被引:6,自引:0,他引:6  
本文比较了泽蛙(Rana limnocharis Boie)单倍体和二倍体的胚胎发育。结果表明:泽蛙单倍体的生活力低下,器官发生异常,自原肠胚起发育速度减慢。据此,作者讨论了单套染色体组在个体发育中的作用。  相似文献   

2.
Natural and Sexual Selection on Many Loci   总被引:21,自引:11,他引:10       下载免费PDF全文
N. H. Barton  M. Turelli 《Genetics》1991,127(1):229-255
A method is developed that describes the effects on an arbitrary number of autosomal loci of selection on haploid and diploid stages, of nonrandom mating between haploid individuals, and of recombination. We provide exact recursions for the dynamics of allele frequencies and linkage disequilibria (nonrandom associations of alleles across loci). When selection is weak relative to recombination, our recursions provide simple approximations for the linkage disequilibria among arbitrary combinations of loci. We show how previous models of sex-independent natural selection on diploids, assortative mating between haploids, and sexual selection on haploids can be analyzed in this framework. Using our weak-selection approximations, we derive new results concerning the coevolution of male traits and female preferences under natural and sexual selection. In particular, we provide general expressions for the intensity of linkage-disequilibrium induced selection experienced by loci that contribute to female preferences for specific male traits. Our general results support the previous observation that these indirect selection forces are so weak that they are unlikely to dominate the evolution of preference-producing loci.  相似文献   

3.
X Jiang  S Hu  Q Xu  Y Chang  S Tao 《Heredity》2013,111(6):505-512
The mechanism of reproducing more viable offspring in response to selection is a major factor influencing the advantages of sex. In diploids, sexual reproduction combines genotype by recombination and segregation. Theoretical studies of sexual reproduction have investigated the advantage of recombination in haploids. However, the potential advantage of segregation in diploids is less studied. This study aimed to quantify the relative contribution of recombination and segregation to the evolution of sex in finite diploids by using multilocus simulations. The mean fitness of a sexually or asexually reproduced population was calculated to describe the long-term effects of sex. The evolutionary fate of a sex or recombination modifier was also monitored to investigate the short-term effects of sex. Two different scenarios of mutations were considered: (1) only deleterious mutations were present and (2) a combination of deleterious and beneficial mutations. Results showed that the combined effects of segregation and recombination strongly contributed to the evolution of sex in diploids. If deleterious mutations were only present, segregation efficiently slowed down the speed of Muller''s ratchet. As the recombination level was increased, the accumulation of deleterious mutations was totally inhibited and recombination substantially contributed to the evolution of sex. The presence of beneficial mutations evidently increased the fixation rate of a recombination modifier. We also observed that the twofold cost of sex was easily to overcome in diploids if a sex modifier caused a moderate frequency of sex.  相似文献   

4.
Anderson JB  Sirjusingh C  Ricker N 《Genetics》2004,168(4):1915-1923
We tested the hypothesis that the time course of the evolution of antifungal drug resistance depends on the ploidy of the fungus. The experiments were designed to measure the initial response to the selection imposed by the antifungal drug fluconazole up to and including the fixation of the first resistance mutation in populations of Saccharomyces cerevisiae. Under conditions of low drug concentration, mutations in the genes PDR1 and PDR3, which regulate the ABC transporters implicated in resistance to fluconazole, are favored. In this environment, diploid populations of defined size consistently became fixed for a resistance mutation sooner than haploid populations. Experiments manipulating population sizes showed that this advantage of diploids was due to increased mutation availability relative to that of haploids; in effect, diploids have twice the number of mutational targets as haploids and hence have a reduced waiting time for mutations to occur. Under conditions of high drug concentration, recessive mutations in ERG3, which result in resistance through altered sterol synthesis, are favored. In this environment, haploids consistently achieved resistance much sooner than diploids. When 29 haploid and 29 diploid populations were evolved for 100 generations in low drug concentration, the mutations fixed in diploid populations were all dominant, while the mutations fixed in haploid populations were either recessive (16 populations) or dominant (13 populations). Further, the spectrum of the 53 nonsynonymous mutations identified at the sequence level was different between haploids and diploids. These results fit existing theory on the relative abilities of haploids and diploids to adapt and suggest that the ploidy of the fungal pathogen has a strong impact on the evolution of fluconazole resistance.  相似文献   

5.
Computer experiments that mirror the evolutionary dynamics of sexual and asexual organisms as they occur in nature were used to test features proposed to explain the evolution of sexual recombination. Results show that this evolution is better described as a network of interactions between possible sexual forms, including diploidy, thelytoky, facultative sex, assortation, bisexuality, and division of labor between the sexes, rather than a simple transition from parthenogenesis to sexual recombination. Diploidy was shown to be fundamental for the evolution of sex; bisexual reproduction emerged only among anisogamic diploids with a synergistic division of reproductive labor; and facultative sex was more likely to evolve among haploids practicing assortative mating. Looking at the evolution of sex as a complex system through individual-based simulations explains better the diversity of sexual strategies known to exist in nature, compared to classical analytical models.  相似文献   

6.
This study develops a simplified model describing the evolutionary dynamics of a population composed of obligate sexually and asexually reproducing, unicellular organisms. The model assumes that the organisms have diploid genomes consisting of two chromosomes, and that the sexual organisms replicate by first dividing into haploid intermediates, which then combine with other haploids, followed by the normal mitotic division of the resulting diploid into two new daughter cells. We assume that the fitness landscape of the diploids is analogous to the single-fitness-peak approach often used in single-chromosome studies. That is, we assume a master chromosome that becomes defective with just one point mutation. The diploid fitness then depends on whether the genome has zero, one, or two copies of the master chromosome. We also assume that only pairs of haploids with a master chromosome are capable of combining so as to produce sexual diploid cells, and that this process is described by second-order kinetics. We find that, in a range of intermediate values of the replication fidelity, sexually reproducing cells can outcompete asexual ones, provided the initial abundance of sexual cells is above some threshold value. The range of values where sexual reproduction outcompetes asexual reproduction increases with decreasing replication rate and increasing population density. We critically evaluate a common approach, based on a group selection perspective, used to study the competition between populations and show its flaws in addressing the evolution of sex problem.  相似文献   

7.
This paper develops simplified mathematical models describing the mutation-selection balance for the asexual and sexual replication pathways in Saccharomyces cerevisiae, or Baker’s yeast. The simplified models are based on the single-fitness-peak approximation in quasispecies theory. We assume diploid genomes consisting of two chromosomes, and we assume that each chromosome is functional if and only if its base sequence is identical to some master sequence. The growth and replication of the yeast cells is modeled as a first-order process, with first-order growth rate constants that are determined by whether a given genome consists of zero, one, or two functional chromosomes. In the asexual pathway, we assume that a given diploid cell divides into two diploids. For the sake of generality, our model allows for mitotic recombination and asymmetric chromosome segregation. In the sexual pathway, we assume that a given diploid cell divides into two diploids, each of which then divide into two haploids. The resulting four haploids enter a haploid pool, where they grow and replicate until they meet another haploid with which to fuse. In the sexual pathway, we consider two mating strategies: (1) a selective strategy, where only haploids with functional chromosomes can fuse with one another; (2) a random strategy, where haploids randomly fuse with one another. When the cost for sex is low, we find that the selective mating strategy leads to the highest mean fitness of the population, when compared to all of the other strategies. When the cost for sex is low, sexual replication with random mating also has a higher mean fitness than asexual replication without mitotic recombination or asymmetric chromosome segregation. We also show that, at low replication fidelities, sexual replication with random mating has a higher mean fitness than asexual replication, as long as the cost for sex is low. If the fitness penalty for having a defective chromosome is sufficiently high and the cost for sex sufficiently low, then at low replication fidelities the random mating strategy has a mean fitness that is a factor of larger than the asexual mean fitness. We argue that for yeast, the selective mating strategy is the one that is closer to reality, which if true suggests that sex may provide a selective advantage under considerably more relaxed conditions than previous research has indicated. The results of this paper also suggest that S. cerevisiae switches from asexual to sexual replication when stressed, because stressful growth conditions provide an opportunity for the yeast to clear out deleterious mutations from their genomes. That being said, our model does not contradict theories for the evolution of sex that argue that sex evolved because it allows a population to more easily adapt to changing conditions.  相似文献   

8.
Biological evolution as conceived by the present synthetic theory of evolution is modelled by a mathematical system which consists of three arrays: the genotype and phenotype population and their environment, and four operators: selection, mutation, recombination, and alteration (describing the change of the environment by the population). An evolutionary process then could be represented as the cyclic iteration of these operations on the respective arrays. Some simple versions of this system were investigated by computer simulation. They exhibited the following properties. (i) Population fitness increased with the generation number. (ii) The evolutionary rate increased with variance of fitness. (iii) The evolutionary rate increased with the number of individuals, and decreased with the number of loci. (iv) The evolutionary rate increased with the selection pressure. (v) For a given system in a given state there existed an optimal mutation rate. (vi) Free recombination was optimal. (vii) The mutational load of fitness increased with the mutation rate, but was independent of the selection pressure; contrary to this, the mutational load of the population “morph” decreased with the selection pressure, i.e. one could compensate for the deleterious effect of mutation by strong selection. These rules applied to haploids with equal, unequal, non-epistatic, and epistatic gene effect, and also to diploids. It was found that epistatic gene effect for relatively low mutation rates slows down evolution, whereas unequal gene effect enhances it. Diploids were not found to be superior to haploids in evolutionary terms, except in the case of diploids with dominant gene action for very small population sizes. The results are discussed with regard to their applicability to the simulation of more complex evolutionary phenomena.  相似文献   

9.
Despite a great deal of theoretical attention, we have limited empirical data about how ploidy influences the rate of adaptation. We evolved isogenic haploid and diploid populations of Saccharomyces cerevisiae for 200 generations in seven different environments. We measured the competitive fitness of all ancestral and evolved lines against a common competitor and find that in all seven environments, haploid lines adapted faster than diploids, significantly so in three environments. We apply theory that relates the rates of adaptation and measured effective population sizes to the properties of beneficial mutations. We obtained rough estimates of the average selection coefficients in haploids between 2% and 10% for these first selected mutations. Results were consistent with semi-dominant to dominant mutations in four environments and recessive to additive mutations in two other environments. These results are consistent with theory that predicts haploids should evolve faster than diploids at large population sizes.  相似文献   

10.
The purpose of this study was to determine the developmental capacity of electro-activated porcine oocytes. Follicular oocytes collected from gilts at local slaughterhouses were matured for 48 h and were then subjected to a single square pulse of direct current for 100 rhojusec at 1,500 V/cm for activation. To obtain activated diploid oocytes, some were treated with 5.0 micro/ml cytochalasin B for 4 h immediately after electro-activation. The frequency of activation ranged from 96 to 100%. While 91% of activated oocytes that had not been treated with cytochalasin B had 2 polar bodies and a nucleus (haploids), 92% of the oocytes treated with cytochalasin B had only the first polar body and 2 nuclei (diploids). Haploids and diploids were further cultured in TCM-199 medium that contained 10% (v/v) heat- treated fetal calf serum (FCS) and 0.1 mg/ml sodium pyruvate (mTCM) or in Whittenk medium plus 0.4% (w/v) bovine serum albumin (BSA). The frequency of abnormal oocytes was significantly higher in mTCM (83%) than in Whitten's medium (65%) 96 h after the electro-activation (P < 0.01), suggesting that Whitten's medium supported the development of activated oocytes beyond the morula stage. In all cases, several oocytes developed to the blastocyst stage 144 h after electro- activation (1 to 12%). The frequency was significantly higher in the case of diploids cultured in Whitten's medium (12%) (P < 0.01) than in the case of haploids cultured in Whitten's medium (4%), or in the case of haploids cultured in mTCM (1%). The mean number of nuclei per blastocyst was significantly lower in mTCM (haploids, 15; diploids, 16.1) than in Whitten's medium (haploids, 35.7; diploids, 40.1; P < 0.01), suggesting that the number of nuclei in blastocysts was affected by the culture medium.  相似文献   

11.
Sliwa P  Kluz J  Korona R 《Genetica》2004,121(3):285-293
Mutations were accumulated over hundreds of generations in a mutator strain of yeast in a constant laboratory environment. This ensured that mutations were frequent and that the quality of environment remained unchanged. Mutations were accumulated in asexual populations of diploids but their impact on fitness was tested both for the diploid clones and for haploid clones derived from them. Dozens of harmful and lethal mutations accumulated in diploids, but important phenotypic traits, such as maximum growth rate, did not deteriorate by more than 10%. There were no signs of decline in population size. In strong contrast, the populations of haploids derived from the diploids suffered from high mortality; their density was reduced by more than three orders of magnitude. These findings indicate how ineffective natural selection can be in removing deleterious mutations from populations of clonally reproducing diploids. They also suggest that phenotypic assays of heterozygous diploids may be of little value as indicators of increasing genetic degeneration.  相似文献   

12.
Bud-site selection in yeast offers an attractive system for studying cell polarity and asymmetric division. Haploids divide in an axial pattern, whereas diploids divide in a bipolar pattern. AXL1 is expressed in haploids but not diploids, and ectopic expression of AXL1 in diploids converts their bipolar budding pattern to an axial pattern. How Axl1 acts as a switch between the bipolar and axial patterns is not understood. Here we report that Axl1 localizes to the mother-bud neck and division site remnants of haploids. Axl1 is absent from diploids. Axl1 colocalizes with Bud3, Bud4, and Bud10, components of the axial landmark structure. This localization suggests that Axl1 couples the axial landmark with downstream polarity establishment factors. Consistent with such a role, Axl1 associated biochemically with Bud4 and Bud5. Genetic evidence suggests that Axl1 works with Bud3 and Bud4 to promote the activity of the Bud10 membrane protein. Given Axl1's suggested role in morphogenesis and cell fusion during mating, we also examined its localization during this process. Axl1 redistributes independently of the axial landmark to a tight cell surface dot at the tip of each mating projection. These dots are rapidly lost as prezygotes form.  相似文献   

13.
Some cytological and morphological features of haploid and dihaploid winter rapó plants obtained via the anther cultivation approach have been studied. It was shown that in haploid plants the number of chloroplasts in stomatal guard cells, the size of the stomatal guard cells themselves were much smaller, and the number of stomata per square unit was greater than in doubled haploids and diploids. Haploids were also characterized by smaller sizes of petals and anthers and, in general, a smaller flower as compared to dihapliods and diploids.  相似文献   

14.
Polymorphism in traits affecting dispersal occurs in a diverse variety of taxa. Typically, the maintenance of a dispersal polymorphism is attributed to environmental heterogeneity where parental bet-hedging can be favored. There are, however, examples of dispersal polymorphisms that occur across similar environments. For example, the estuarine polychaete Streblospio benedicti has a highly heritable offspring dimorphism that affects larval dispersal potential. We use analytical models of dispersal to determine the conditions necessary for a stable dispersal polymorphism to exist. We show that in asexual haploids, sexual haploids, and in sexual diploids in the absence of overdominance, asymmetric dispersal is required in order to maintain a dispersal polymorphism when patches do not vary in intrinsic quality. Our study adds an additional factor, dispersal asymmetry, to the short list of mechanisms that can maintain polymorphism in nature. The region of the parameter space in which polymorphism is possible is limited, suggesting why dispersal polymorphisms within species are rare.  相似文献   

15.
Many organisms spend a significant portion of their life cycle as haploids and as diploids (a haploid–diploid life cycle). However, the evolutionary processes that could maintain this sort of life cycle are unclear. Most previous models of ploidy evolution have assumed that the fitness effects of new mutations are equal in haploids and homozygous diploids, however, this equivalency is not supported by empirical data. With different mutational effects, the overall (intrinsic) fitness of a haploid would not be equal to that of a diploid after a series of substitution events. Intrinsic fitness differences between haploids and diploids can also arise directly, for example because diploids tend to have larger cell sizes than haploids. Here, we incorporate intrinsic fitness differences into genetic models for the evolution of time spent in the haploid versus diploid phases, in which ploidy affects whether new mutations are masked. Life‐cycle evolution can be affected by intrinsic fitness differences between phases, the masking of mutations, or a combination of both. We find parameter ranges where these two selective forces act and show that the balance between them can favor convergence on a haploid–diploid life cycle, which is not observed in the absence of intrinsic fitness differences.  相似文献   

16.
Genic Variation in Male Haploids under Deterministic Selection   总被引:2,自引:1,他引:1       下载免费PDF全文
Pamilo P  Crozier RH 《Genetics》1981,98(1):199-214
Genic variation in male haploids and male diploids was compared assuming constant fitnesses (derived from computer-generated random numbers) and infinite population size. Several models were studied, differing by the fitness correlation between the sexes (rs) and genotypes (rg), and by the intensity of selection as measured by the coefficient of variation (CV) of the fitness distribution. Genic variation was quantified using the proportion of polymorphic loci, P, the gene diversity at polymorphic loci, Hp, and the gene diversity over all loci, Ha. The two genetic systems were compared via variation ratios: variation in male haploidy/variation in male diploidy.—P and Ha were markedly lower for male-haploids than for male diploids, the variation ratios declining with increasing rs, rg and CV, but the two genetic systems were similar for Hp. Except for male diploids with rs = 1, the two sexes had different equilibrium gene frequencies but the sample sizes required to detect such differences reliably were larger than usually possible in surveys of natural populations.—Data from natural populations fit the above trends qualitatively, but the variation ratios are much lower than those from our analyses, except that for Hp, which is higher when Drosophila is excluded. Also, the frequency distribution of most common alleles from electrophoretic data has a deficiency of intermediate frequencies compared to that from the computer-generated sets of fitnesses, possibly reflecting either the influence of stochastic processes shifting frequencies away from equilibrium or the involvement of alleles under selection-mutation balance.——While electrophoretic data suggest that Drosophila has unusually high levels of genic variation, unusually low levels of genic variation in male haploids compared with male diploids are not strongly indicated. However, if further data confirm male haploids as having low levels of genic variation, likely explanations are that the bulk of electrophoretically detected variation involves fixed-fitness balancing selection, selection-mutation balance involving slightly deleterious recessive alleles, new favorable male haploid alleles moving more rapidly to fixation than under male diploidy and thus carrying linked loci to fixation faster, or some combination of these possible factors.  相似文献   

17.
Engel CR  Destombe C  Valero M 《Heredity》2004,92(4):289-298
The impact of haploid-diploidy and the intertidal landscape on a fine-scale genetic structure was explored in a red seaweed Gracilaria gracilis. The pattern of genetic structure was compared in haploid and diploid stages at a microgeographic scale (< 5 km): a total of 280 haploid and 296 diploid individuals located in six discrete, scattered rock pools were genotyped using seven microsatellite loci. Contrary to the theoretical expectation of predominantly endogamous mating systems in haploid-diploid organisms, G. gracilis showed a clearly allogamous mating system. Although within-population allele frequencies were similar between haploids and diploids, genetic differentiation among haploids was more than twice that of diploids, suggesting that there may be a lag between migration and (local) breeding due to the long generation times in G. gracilis. Weak, but significant, population differentiation was detected in both haploids and diploids and varied with landscape features, and not with geographic distance. Using an assignment test, we establish that effective migration rates varied according to height on the shore. In this intertidal species, biased spore dispersal may occur during the transport of spores and gametes at low tide when small streams flow from high- to lower-shore pools. The longevity of both haploid and diploid free-living stages and the long generation times typical of G. gracilis populations may promote the observed pattern of high genetic diversity within populations relative to that among populations.  相似文献   

18.
Understanding the maintenance of genetic variation in the face of selection remains a key issue in evolutionary biology. One potential mechanism for the maintenance of genetic variation is opposing selection during the diploid and haploid stages of biphasic life cycles universal among eukaryotic sexual organisms. If haploid and diploid gene expression both occur, selection can act in each phase, potentially in opposing directions. In addition, sex-specific selection during haploid phases is likely simply because male and female gametophytes/gametes tend to have contrasting life histories. We explored the potential for the maintenance of a stable polymorphism under ploidally antagonistic as well as sex-specific selection. Furthermore, we examined the role of the chromosomal location of alleles (autosomal or sex-linked). Our analyses show that the most permissible conditions for the maintenance of polymorphism occur under negative ploidy-by-sex interactions, where stronger selection for an allele in female than male diploids is coupled with weaker selection against the allele in female than male haploids. Such ploidy-by-sex interactions also promote allele frequency differences between the sexes. With constant fitness, ploidally antagonistic selection can maintain stable polymorphisms for autosomal and X-linked genes but not for Y-linked genes. We discuss the implications of our results and outline a number of biological settings where the scenarios modeled may apply.  相似文献   

19.
The nutrient limitation hypothesis provides a nongenetic explanation for the evolution of life cycles that retain both haploid and diploid phases: differences in nutrient requirements and uptake allow haploids to override the potential genetic advantages provided by diploidy under certain nutrient limiting conditions. The relative fitness of an isogenic series of haploid, diploid and tetraploid yeast cells (Saccharomyces cerevisiae), which were also equivalent at the mating type locus, was measured. Fitness was measured both by growth rate against a common competitor and by intrinsic growth rate in isolated cultures, under four environmental conditions: (1) rich medium (YPD) at the preferred growth temperature (30 °C); (2) nutrient poor medium (MM) at 30 °C; (3) YPD at a nonpreferred temperature (37 °C); and (4) MM at 37 °C. In contrast to the predictions of the nutrient limitation hypothesis, haploids grew significantly faster than diploids under nutrient rich conditions, but there were no apparent differences between them when fitness was determined by relative competitive ability. In addition, temperature affected the relative growth of haploids and diploids, with haploids growing proportionately faster at higher temperatures. Tetraploids performed very poorly under all conditions compared. Cell geometric parameters were not consistent predictors of fitness under the conditions measured.  相似文献   

20.
Peroxidase and isoperoxidase patterns of tobacco have been comparatively analyzed in relation to parental origin and ploidy level (including hypohaploidy status) at different ages and physiological states. The interspecific hybrid N. sylvestris × N. tomentosiformis shows an additive pattern of parental peroxidases, which also resembles that of N. tabacum cv. Wisconsin and cv. Samsun. Enzyme activity (on dry weight and protein bases, decreases from the diploid to the hypohaploid forms of Wisconsin and Samsun with respective quantitative differences in the zymograms, when the plants are compared at the same chronological and vegetative stages. Abnormally vegetatively ageing hypohaploids recover all peroxidasic isoenzymes and reach an enzyme activity as high as those of haploids and diploids. Flowering hypohaploids, however, generally behave like haploids and diploids in changing their balance between acidic and basic peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号