首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gross morphology of the reservoir of the mesosomal gland of male large carpenter bees (tribe Xylocopini) was examined in 46 taxa (species and subspecies) in the three genera of the tribe. Males of all but six species of Xylocopa examined possess a cuticle-lined invagination that originates along the suture between the metanotum and propodeum. Size of the reservoir and arrangement of the tubules are consistent within subgenera (with a single exception) but variable among most subgenera. The morphological extremes range from a simple, short invagination that opens medially to a complex set of convoluted tubules that open from paired, laterally-positioned openings and extend forward to the metanotum or scutellum and posteriorly to the propodeal pit. Comparisons of mesosomal shapes between the sexes or between males in taxa with and without this reservoir reveal that structural changes of the posterior elements of the mesosoma are associated with the presence of the large reservoirs. In turn, reservoir size is predictive of male reproductive behaviour. The probable mode of gland function, the potential use and limitations of this structure as a phylogenetic character and the relationship of gland reservoir size to the diversity of mate-locating behaviours found in the Xylocopini are discussed.  相似文献   

2.
1. The thermal adaptation hypothesis proposes that because thermoregulation involves a high metabolic cost, thermal limits of organisms must be locally adapted to temperatures experienced in their environments. There is evidence that tolerance to high temperatures decreases in insects inhabiting colder habitats and microclimates. However, it is not clear if thermal limits of ectotherms with contrasting temporal regimes, such as diurnal and nocturnal insects, are also adapted to temperatures associated with their circadian activities. 2. This study explores differences in heat tolerance among diurnal and nocturnal ant species in four ecosystems in Mexico: tropical montane, tropical rainforest, subtropical dry forests, and high‐elevation semi‐desert. 3. The critical thermal maximum (CTmax), i.e. the temperature at which ants lost motor control, was estimated for diurnal and nocturnal species. CTmax for 19 diurnal and 12 nocturnal ant species distributed among 45 populations was also estimated. 4. Semi‐desert and subtropical dry forest ants displayed higher tolerances to high temperatures than did ants in tropical rainforest. The lowest tolerance to high temperatures was recorded in tropical montane forest ants. In general, among all habitats, the CTmax of nocturnal ants was lower than that of diurnal ants. 5. An increase in nocturnal temperatures, combined with lower tolerance to high temperatures, may represent a substantial challenge for nocturnal ectotherms in a warming world.  相似文献   

3.
4.
The biogeographical history of major groups of bees with worldwide distributions have often been explained through hypotheses based on Gondwanan vicariance or long distance dispersal events, but until recently these hypotheses have been very difficult, if not impossible, to distinguish. New fossil data, comprehensive information on Mesozoic and Cenozoic coastline positions and the availability of phylogenetically informative DNA markers now makes it feasible to test these hypotheses for some groups of bees. This paper presents historical biogeographical analyses of the genus Xylocopa Latreille, based on phylogenetic analyses of species belonging to 22 subgenera using molecular data from two nuclear genes, elongation factor‐1α (EF‐1α) and phosphoenolpyruvate carboxykinase (PEPCK), combined with previously published morphological and mitochondrial data sets. Phylogenetic analyses based on parsimony and likelihood approaches resulted in several groups of subgenera supported by high bootstrap values (>85%): an American group with the Oriental/Palaearctic subgenera Nyctomelitta and Proxylocopa as sister taxa; a geographically diverse group (Xylocopa s.l); and a group consisting of African and Oriental subgenera. The relationships among these three clades and the subgenus Perixylocopa remained unresolved. The Oriental subgenus Biluna was found to be the sister group of all other carpenter bee subgenera included in this study. Using a relaxed molecular clock calibrated using fossil carpenter bees, we show that the major splits in the carpenter bee phylogeny occurred well after the final breakup of Gondwanaland (the separation of South America and Africa, 100 Mya), but before important Miocene fusion events. Ancestral area analysis showed that the genus Xylocopa most likely had an Oriental‐Palaearctic origin and that the present world distribution of Xylocopa subgenera resulted mainly from independent dispersal events. The influence of Pleistocene glaciations on carpenter bee distributions is also discussed. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 249–266.  相似文献   

5.
木蜂作为蜜蜂科的重要类群,是热带和亚热带地区显花植物常见的传粉者.木蜂具有访花的季节时间长、访花植物种类多、能耐高温或低光照、能嗡声传粉等特点.这些访花特点是木蜂作为热带植物、尤其是温室作物、夜间开花植物和部分茄属植物的重要传粉者.近年来国外已经证明木蜂能有效为蓝莓、西番莲、荷包豆、温室西红柿和温室甜瓜授粉,但我国有关木蜂为多数农作物传粉的重要性和有效性的证据较少.本文综述了近年来木蜂的访花行为和传粉作用的研究进展,为进一步保护、管理和利用木蜂资源提供理论依据.  相似文献   

6.
The species Huarpea wagneriella (Hymenoptera: Sapygidae), a cleptoparasite of nests of bees of the genera Xylocopa Latreille and Megachile Latreille (Hymenoptera: Apoidea), is reported for the first time as a cleptoparasite of Xylocopa ciliata Burmeister (Hymenoptera: Apidae) in Buenos Aires, Argentina. Biological notes on species of Xylocopa and a morphological characterization of Huarpea are given.  相似文献   

7.
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 108, and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis , facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species ( Megalopta genalis ) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.  相似文献   

8.
Brood pheromone modulated the foraging behavior of commercial honey bee, Apis mellifera L., colonies pollinating a 10-ha market garden of cucumber, Cucurbita pepo L., and zucchini, Cucumis saticus L., in Texas in late autumn. Six colonies were randomly selected to receive 2000 larval equivalents of brood pheromone and six received a blank control. The ratio of pollen to nonpollen foragers entering colonies was significantly greater in pheromone-treated colonies 1 h after treatment. Pheromone-treated foragers returned with pollen load weights that were significantly heavier than controls. Pollen returned by pheromone-treated foragers was 43% more likely to originate from the target crop. Number of pollen grains washed from the bodies of nonpollen foragers from pheromone-treated colonies was significantly greater than controls and the pollen was 54% more likely to originate from the target crop. Increasing the foraging stimulus environment with brood pheromone increased colony-level foraging and individual forager efforts. Brood pheromone is a promising technology for increasing the pollination activity and efficiency of commercial honey bee colonies.  相似文献   

9.
木蜂Xylocopa作为蜜蜂科的一个重要类群, 用来研究昆虫社会进化早期阶段具有重要意义。本文综述了近年来木蜂的营巢习性、 社会性行为和交配策略的研究进展。木蜂巢的建筑与巢内巢室的分布、 巢室的大小、 贮备蜂粮的效率和被寄生的敏感性等均有一定的关系。在筑巢地点, 随着木蜂种群数量的增加, 同种雌蜂之间的资源存在着竞争, 木蜂对巢室的守卫加强, 更多地表现为对同种雌蜂的守卫以及防御其他的天敌入侵。其社会多态性由独栖性向社会性演化, 主要表现为独栖性、 亚社会性、 半社会性、 共生性和准社会性等方式, 甚至同一种群内会出现不同的社会性行为。在交配策略上, 木蜂的雄蜂在外部形态特征上具有适应交配和寻找雌蜂的进化特征, 并且具有复杂的领地行为。这些研究理论对于我们深刻理解木蜂的行为生物学具有重要意义, 同时也有助于进行更深层次的社会性蜂类演化进程的探索。  相似文献   

10.
The incidence and severity of environmental stressors associated with global climate change are increasing and insects frequently face variability in temperature and moisture regimes at variable spatio-temporal scales. Coincidental with this, is increased thermal and hydric stress on insects as warming increases vapour pressure deficit (VPD), the drying power of the air. While the effects of mean temperatures on fitness are widely documented, fluctuations in both temperature and relative humidity (RH) are largely unexplored. Here, we investigated the effects of dynamic temperature and RH fluctuations (around the mean [28°C; 65% RH]) on low and high thermal tolerance of laboratory-reared adult invasive Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), measured as critical thermal minima (CTmin), critical thermal maxima (CTmax), chill coma recovery time (CCRT) and heat knockdown time (HKDT). Our results show that increased environmental amplitude significantly influenced low and high temperature responses and varied across traits tested. The highest amplitude (δ12°C; 28% RH) compromised CTmin, CCRT and HKDT traits while enhancing CTmax. Similarly, acclimation to δ3°C; 7% RH compromised both low (CTmin and CCRT) and high (CTmax and HKDT) fitness traits. Variations in fitness reported here indicate significant roles of combined thermal and moisture fluctuations on B. dorsalis fitness suggesting caveats that are worthy considering when predicting species responses to climate change. These results are significant for B. dorsalis population phenology, management, quantifying vulnerability to climate variability and may help modelling future biogeographical patterns.  相似文献   

11.
12.
The large carpenter bees (Xylocopinae, Xylocopa Latreille) occurring in central Saudi Arabia are reviewed. Two species are recognized in the fauna, Xylocopa (Koptortosoma) aestuans (Linnaeus) and Xylocopa (Ctenoxylocopa) sulcatipes Maa. Diagnoses for and keys to the species of these prominent components of the central Saudi Arabian bee fauna are provided to aid their identification by pollination researchers active in the region. Females and males of both species are figured and biological notes provided for Xylocopa sulcatipes. Notes on the nesting biology and ecology of Xylocopa sulcatipes are appended. As in studies for this species from elsewhere, nests were found in dried stems of Calotropis procera (Aiton) (Asclepiadaceae) and Phoenix dactylifera L. (Arecaceae).  相似文献   

13.
本研究从采粉工蜂飞行中能量消耗相关的几个方面入手,分析了蜜蜂属(Apis) 8个物种的花粉采集器官。结果表明,花粉筐表面积、翅膀表面积、体重及胸部动力容量与蜂种个体的体长呈极显著相关,并且它们随蜂种个体的增大而呈对数线性比例增加。除意大利蜜蜂(A·mellifera ligustica)以外,花粉团重量与花粉筐和基跗节表面积成线性比例。工蜂负重前后重量的变化与花粉筐和翅膀的表面积不成比例[动物学报51 (5) :947 -951 , 2005]。  相似文献   

14.
15.
《Animal behaviour》1987,35(4):1026-1036
Psithyrus ashtoni (Hymenoptera: Apidae) is an obligate, workerless bumble, bee social parasite which invades nests of Bombus affinis. Although parasites are limited by host worker defence to invading very small colonies, there is considerable flexibility in the way parasites control host brood bionomics once they are accepted inside the nest. A study of 46 parasitized and 22 non-parasitized laboratory colonies of B. affinis showed that P. ashtoni females cohabited with host queens and workers while the worker force increased, but not to the maximum normally achieved in non-parasitized nests. While colony reproductive success was correlated with the number of workers reared, parasites risked being killed or ejected from the comb by workers, after the queen had lost dominance. Host bees usually succeeded in rearing offspring, and Psithyrus reproductive success was related to the ability of parasites to control proportional investment in the two species. In addition to displacing P. ashtoni females, host bees ate the eggs of parasites and ejected their larvae. These behaviours were also exhibited by workers in the later stages of development of non-parasitized colonies. These results indicate that social parasites are at least partially subject to the conflict of genetic self-interest between the queen and her workers which is believed to influence the control of reproductive investment in haplodiploid Bombus societies.  相似文献   

16.
Under stressful thermal environments, insects adjust their behavior and physiology to maintain key life‐history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. When exposed for 2 h to a static temperature, lower lethal temperatures ranged from ?9 to 6 °C, ?14 to ?2 °C, and ?1 to 4 °C while upper lethal temperatures ranged from 37 to 48 °C, 41 to 49 °C, and 36 to 39 °C for C. partellus eggs, larvae, and C. sesamiae adults, respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean supercooling points (SCPs) for C. partellus larvae, pupae, and adults were ?11.82 ± 1.78, ?10.43 ± 1.73 and ?15.75 ± 2.47, respectively. Heat knock‐down time (HKDT) and chill‐coma recovery time (CCRT) varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the latter recovered significantly faster following chill‐coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host–parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect–natural enemy interactions under rapidly changing thermal environments.  相似文献   

17.
18.
19.
Abstract In this paper we focus on the occurrence and morphological aspects of exocrine glands in several bee species. Morphology of head labial, mandibular, Dufour, and abdominal tegumentar glands was investigated under light microscopy, scanning electron microscopy and transmission electron microscopy. Most of such glands present cells with cytoplasm homogeneous and acidophilic, or contain small apparently empty vacuoles. The cytoplasm cells' ultrastructure showed a well developed smooth endoplasmic reticulum, many polymorphic mitochondria, rare Golgi, lipid droplets, myelin figures, and many basal and apical plasma membrane infoldings. All these results are discussed in the text.  相似文献   

20.
Sennertia mites live as inquilines in the nests of carpenter bees and disperse as deutonymphs on newly emerged adult bees. Because their life cycle is tightly linked to that of the host bees, Sennertia may diverge in response to speciation in the hosts. However, the majority of Sennertia species are associated with several closely related carpenter bees, suggesting that host speciation may not be reflected in mite genetic structure. Here we investigate the extent of host-associated genetic differentiation in two Sennertia mites (S. alfkeni and S. japonica) that share four closely related, strictly allopatric large carpenter bees (Xylocopa). Analysis of the mitochondrial cytochrome oxidase subunit I (COI) gene in Sennertia unexpectedly indicates that the two species represent morphological variants of a single species, and they collectively group into four distinct, allopatric clades that are uniquely associated with a single Xylocopa host. An exception is the mites associated with X. amamensis of the northernmost populations, which have genotypes typical of those associated with neighboring X. appendiculatacircumvolans. Additional analysis using amplified fragment length polymorphism (AFLP) further corroborates the presence of four mite clades but contrary to the COI data, suggests that the mites of the southernmost population of X. appendiculatacircumvolans have genetic profiles typical of those associated with X. amamensis. These results indicate that some mites have undergone secondary host switch after the formation of the four mite lineages and further experienced mitochondrial introgression during period of lineage coexistence. Overall, our results strongly urge reappraisal of deutonymph-based mite taxonomy and illuminate the importance of host-associated divergence during incipient stage of speciation in chaetodactylid mites. Furthermore, the occurrence of host switch and introgression between genetically differentiated mites entails that two host species have co-occurred in the past, thus providing a unique source of evidence for migration and competitive exclusion between the presently allopatric Xylocopa hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号