首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Several bee species are declining due to multiple factors, including pathogens. Ingestion of sunflower (Helianthus annuus) pollen can dramatically reduce the bumble bee gut pathogen Crithidia bombi, but little is known about how timing and exposure to sunflower pollen consumption affects pathogen load. 2. Two experiments were carried out to investigate how exposure to sunflower pollen relative to pathogen exposure affects Crithidia bombi in Bombus impatiens. Foraging trials with pollen‐producing and male‐sterile (pollen absent) sunflower lines were performed to investigate whether sunflower pollen affected pathogen transmission in a single foraging bout, and 7‐day laboratory trials were done to investigate whether timing and duration of exposure to sunflower pollen after infection affected C. bombi. 3. In foraging trials, pollen presence on inflorescences inoculated with C. bombi did not affect transmission (pathogen cell counts of foraging workers) 1 week later, suggesting that a brief experience with sunflower pollen concurrent with pathogen exposure is insufficient to reduce infection. In laboratory trials, consuming sunflower pollen for the first 3.5 days or all 7 days after infection reduced cell counts compared with a negative control pollen, but consuming sunflower pollen starting 3.5 days after infection did not. Consuming sunflower pollen for 7 days was significantly and substantially more effective than any other treatment. Thus, both duration and timing of exposure to sunflower pollen may affect pathogen load. 4. These results are important for understanding ecological disease dynamics in natural settings with free‐flying bumble bees, and may inform decisions about using medicinal diets to manage bumble bee health commercially.  相似文献   

2.
Concerns over the availability of honeybees (Apis mellifera L.) to meet pollination demands have elicited interest in alternative pollinators to mitigate pressures on the commercial beekeeping industry. The blue orchard bee, Osmia lignaria (Say), is a commercially available native bee that can be employed as a copollinator with, or alternative pollinator to, honeybees in orchards. To date, their successful implementation in agriculture has been limited by poor recovery of bee progeny for use during the next spring. This lack of reproductive success may be tied to an inadequate diversity and abundance of alternative floral resources during the foraging period. Managed, supplementary wildflower plantings may promote O. lignaria reproduction in California almond orchards. Three wildflower plantings were installed and maintained along orchard edges to supplement bee forage. Plantings were seeded with native wildflower species that overlapped with and extended beyond almond bloom. We measured bee visitation to planted wildflowers, bee reproduction, and progeny outcomes across orchard blocks at variable distances from wildflower plantings during 2015 and 2016. Pollen provision composition was also determined to confirm O. lignaria wildflower pollen use. Osmia lignaria were frequently observed visiting wildflower plantings during, and after, almond bloom. Most O. lignaria nesting occurred at orchard edges. The greatest recovery of progeny occurred along the orchard edges having the closest proximity (80 m) to managed wildflower plantings versus edges farther away. After almond bloom, O. lignaria nesting closest to the wildflower plantings collected 72% of their pollen from Phacelia spp., which supplied 96% of the managed floral area. Phacelia spp. pollen collection declined with distance from the plantings, but still reached 17% 800 m into the orchard. This study highlights the importance of landscape context and proximity to supplementary floral resources in promoting the propagation of solitary bees as alternative managed pollinators in commercial agriculture.  相似文献   

3.
Reproduction is a nutritionally costly activity for many insects, as their eggs are rich in lipids and proteins. That cost seems especially acute for non-social bees, which for their size, lay enormous eggs. All adult female bees visit flowers, most of them to collect pollen and nectar, or sometimes oils, to feed their progeny. For adult bees, the need for pollen feeding has only been detailed for the honey bee, Apis mellifera. To experimentally test for the reproductive value of adult pollen feeding by a non-social bee, Osmia californica (Hymenoptera: Apiformes: Megachilidae), young female bees plus males were released into large glasshouse cages provided with either a male-fertile sunflower cultivar or a pollen-less one. Females regularly visited and drank nectar from flowers of both cultivars. Abundant orange pollen was seen regularly in guts of females confined with the male-fertile sunflowers, indicative of active pollen ingestion. All females’ terminal oocytes (next egg to be laid) were small at emergence. Oocytes of females confined with the pollen-less sunflowers remained small, despite frequent nectaring and exposure to other floral stimuli. In contrast, the basal oocytes of female O. californica with access to pollen had swelled to full size within ten days following emergence, enabling them to lay eggs in provided nest tubes. Adult females of this solitary bee required dietary pollen to reproduce; nitrogen stores acquired as larvae were inadequate. Early and regular pollen feeding in part paces the onset and maximum tempo of solitary bees’ lifetime reproductive output.  相似文献   

4.
Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen.  相似文献   

5.
Post‐hibernated bumblebee (Bombus terrestris) queens were kept for 1 week under photoperiodic conditions of 8 h light : 16 h dark, and at four different temperatures (24, 28, 32 and 36°C). The reproductive performance of the queens was then observed. It was found that exposure temperature and hibernation duration did not affect the oviposition rate. The pre‐oviposition period was found to be shortest (3.8 ± 0.7 days) for queens that had hibernated for 4.0 months and had been activated at 28°C. Timing of the initiation of the switch‐point was not affected by exposure temperature and hibernation duration. Significantly higher numbers of workers (268.0 ± 31.4) and sexual queens (119.3 ± 16.8) were produced by the queens that had hibernated for 3.0 months and had been activated at 28 and 36°C, respectively. The queens that had hibernated for 4.0 months and had been activated at 36°C produced the highest number of males (296.2 ± 32.3).  相似文献   

6.
Reproductive partitioning among group members is a key feature in social Hymenoptera. We investigated the genetic colony structure of a tropical paper wasp Polistes olivaceus, with an emphasis on variation in the number of queens and reproductive sharing among queens. Among 22 P. olivaceus colonies, 6 were monogynous, 9 polygynous, and 7 were queenless. Adults and brood (eggs and larvae) were genotyped based on six polymorphic microsatellite loci. In each of the polygynous colonies, progenies were assigned to their mothers using maximum-likelihood methods. Nestmate queens were full sisters. The vast majority of reproduction appeared to be monopolized by the dominant queen (α), and the overall reproductive skews were 0.63 ± 0.04 (B index) and 0.97 ± 0.02 (S c index). Although all nestmate queens had equal reproductive potential, the high magnitude of reproductive skew was enigmatic in this species. Although 9.55 ± 2.07 workers contained developed ovaries in 11 of 15 queen-right colonies, they were unrelated to the nestmate queens but related to each other as full sisters, suggesting that they were the remaining offspring of superseded queens. In 2 of the 11 colonies, we detected male eggs produced by reproductive workers. On average, 7.27 % of the total genotyped male eggs were derived from reproductive workers among the colonies. These results suggest three possibilities regarding the presence of reproductive workers in the P. olivaceus colonies: drifting between colonies, putative remaining offspring from superseded queens, and the offspring of unrelated females who joined the colonies and reproduced there. We found no worker-derived larvae or adult males, suggesting that male eggs were removed by nestmates at some point between oviposition and hatching.  相似文献   

7.
We selected honey bee colonies (Apis mellifera L.) with a high tendency to collect sunflower pollen and estimated the heritability of this trait. The percentage of sunflower pollen collected by 74 colonies was evaluated. Five colonies that collected the highest percentages of sunflower pollen were selected. Nineteen colonies headed by daughters of these selected queens were evaluated for this characteristic in comparison with 20 control (unselected) colonies. The variation for the proportion of sunflower pollen was greater among colonies of the control group than among these selected daughter colonies. The estimated heritability was 0.26 +/- 0.23, demonstrating that selection to increase sunflower pollen collection is feasible. Such selected colonies could be used to improve sunflower pollination in commercial fields.  相似文献   

8.
To test whether the nectarless flowers of Cypripedium tibeticum attract pollinators through mimicry like the allied species C. macranthos var. rebunense, pollination biology of C. tibeticum was investigated in western China. Although C. tibeticum was also pollinated by bumble bee queens, i.e. Bombus lepidus , B. lucorum and B. hypnorum , no special, rewarding model plants were found in the habitat. Field experimentation confirmed that the flowers were self-compatible but insects were required to transfer orchid pollen to the stigma. Both Bombus queens and workers were visitors, but queens were much more frequent than workers and only queens were effective pollinators. Floral functional morphology analysis showed that it was large queens rather than small workers that fitted well with the flowers of C. tibeticum. With the faint sweet-fruity scent, the minor floral fragrance compound, ethyl acetate, probably plays a role in attracting bumble bees by food deception. The dark flowers with the inflated, trap-like labellum are hypothesized to mimic the nest site of queens. Therefore, bumble bee queens tend to be attracted by C. tibeticum through nest site mimic combined with food deception. Considering that the co-blooming flowers of C. flavum are pollinated by the Bombus workers, and C. smithii pollinated by a queen, we suggest that using the same bumblebees with different body sizes as the pollinators is the main reproductive isolation between interfertile C. tibeticum and C. flavum, while C. tibeticum and C. smithii tend to hybridize naturally.  相似文献   

9.
Hybridogenesis is a sexual reproductive system, whereby parents from different genetic origin hybridize. Both the maternal and paternal genomes are expressed in somatic tissues, but the paternal genome is systematically excluded from the germ line, which is therefore purely maternal. Recently, a unique case of hybridogenesis at a social level was reported in the desert ant Cataglyphis hispanica. All workers are sexually produced hybridogens, whereas sexual forms (new queens and males) are produced by queens through parthenogenesis. Thus, only maternal genes are perpetuated across generations. Here, we show that such an unusual reproductive strategy also evolved in two other species of Cataglyphis belonging to the same phylogenetic group, Cataglyphis velox and Cataglyphis mauritanica. In both species, queens mate exclusively with males originating from a different genetic lineage than their own to produce hybrid workers, while they use parthenogenesis to produce the male and female reproductive castes. In contrast to single‐queen colonies of C. hispanica, colonies of C. velox and C. mauritanica are headed by several queens. Most queens within colonies share the same multilocus genotype and never transmit their mates' alleles to the reproductive castes. Social hybridogenesis in the desert ants has direct consequences on the genetic variability of populations and on caste determination. We also discuss the maintenance of this reproductive strategy within the genus Cataglyphis.  相似文献   

10.
Many beekeepers feed their western honey bee (Apis mellifera) colonies artificial pollen substitutes to provide colonies with adequate nutrition during times of limited pollen quantity or quality. We provided caged worker bees commercially available pollen substitutes (AP23, MegaBee, UltraBee) and wildflower pollen in a choice-test to determine their relative attraction to/preference for the diets. We measured diet consumption by honey bees and observed honey bee behaviour to evaluate bee preferences for certain diets. The bees interacted with and consumed more wildflower pollen than they did any of the commercially available pollen substitutes. Our data suggest that bees have a strong preference for wildflower pollen over commercially available pollen substitutes.  相似文献   

11.
12.
Bombus terrestris (L.) (Hymenoptera: Apidae, Apinae, Bombini) has been introduced to Japan and became the dominant bumblebee in some areas, replacing native species. To implement an effective eradication program, the attributes responsible for establishment of the species must be better understood. Because body size has frequently been related to reproductive success in female insects, I examined the effect of B. terrestris queen size during hibernation, nest founding, and reproduction stages. Queens exhibited clear variation in size. Foundresses were significantly larger than gynes, indicating that larger queens may have an advantage over smaller ones in surviving hibernation. The over‐representation of queens with pollen at larger sizes suggested that larger queens may also have an advantage over smaller ones in nest founding. On the other hand, foundress size was not significantly associated with reproductive output. The number of collected foundresses in this study was not sufficient to draw a clear conclusion but factors other than foundress size may also play an important role in determining reproduction. In addition, gyne size increased significantly during the 4‐year survey. Because large queens have an advantage during hibernation, increased body size may increase the number of hibernating queens that survive, allowing them to outcompete native bumblebees.  相似文献   

13.
Bombus terrestris queens may contract infections of the trypanosome parasite Crithidia bombi from their natal nests; alternatively, the queens may also become infected after leaving their natal nests while foraging on contaminated flowers. We expected that, because C. bombi adapts to the natal colony during the previous generation, C. bombi infections from the natal colony will be more damaging to queens than a novel infection acquired from an unrelated colony. To test our prediction, we used queens exposed to three treatment groups: natal infection, novel infection, and control (no infection). We found that the infected queens produced fewer males and had a lower overall fitness, but we did not find any differences based on the source of the infections. We noted a strong matriline effect on the likelihood of a queen surviving hibernation and successfully founding a colony. Taken together, our results suggest that while C. bombi affects the fitness of B. terrestris, one vertical transmission event is no more damaging than randomly encountered infections. Furthermore, we found that, at least under laboratory conditions, matriline effects on fitness could override the effect of infection status. Received 2 September 2007; revised 9 November 2007; accepted 20 November 2007.  相似文献   

14.
Melissococcus plutonius is a pathogenic bacterium affecting immature stages of the western honey bee (Apis mellifera) and leads to European foulbrood (EFB) disease. Despite EFB outbreaks increasing in frequency in several countries in recent decades, there is little knowledge on the epidemiology of M. plutonius or on the defence mechanisms of honey bees against this pathogen. Mating of honey bee queens with multiple males (polyandry) can be such a mechanism, as it has been shown to be beneficial to colony health and fitness. It is hypothesized that a high level of polyandry was selected for in response to pathogen pressure to maximize the probability that at least some patrilines among nestmates in a colony possess a high degree of resistance to specific pathogens, ultimately protecting colonies against infections. We show that M. plutonius infection provokes differential mortality among patrilines of immature honey bee workers. Such differences indicate a genetic origin of resistance against this pathogen—supporting the polyandry hypothesis—and open up avenues to improve control of EFB disease via selective breeding.  相似文献   

15.
Foraging behavior is a critical adaptation by insects to obtain appropriate nutrients from the environment for development and fitness. Bumble bees (Bombus spp.) form annual colonies which must rapidly increase their worker populations to support rearing reproductive individuals before the end of the season. Therefore, colony growth and reproduction should be dependent on the quality and quantity of pollen resources in the surrounding landscape. Our previous research found that B. impatiens foraging preferences to different plant species were shaped by pollen protein:lipid nutritional ratios (P:L), with foragers preferring pollen species with a ~5:1 P:L ratio. In this study, we placed B. impatiens colonies in three different habitats (forest, forest edge, and valley) to determine whether pollen nutritional quality collected by the colonies differed between areas that may differ in resource abundance and diversity. We found that habitat did not influence the collected pollen nutritional quality, with colonies in all three habitats collecting pollen averaging a 4:1 P:L ratio. Furthermore, there was no difference in the nutritional quality of the pollen collected by colonies that successfully reared reproductives and those that did not. We found however, that “nutritional intake,” calculated as the colony‐level intake rate of nutrient quantities (protein, lipid, and sugar), was strongly related to colony growth and reproductive output. Therefore, we conclude that B. impatiens colony performance is a function of the abundance of nutritionally appropriate floral resources in the surrounding landscape. Because we did not comprehensively evaluate the nutrition provided by the plant communities in each habitat, it remains to be determined how B. impatiens polylectic foraging strategies helps them select among the available pollen nutritional landscape in a variety of plant communities to obtain a balance of key macronutrients.  相似文献   

16.
Abstract.
  • 1 In natural populations, colonies of bumble bees vary in many important life history traits, such as colony size and age at maturity, or the number and sex of reproductives produced. We investigated how the presence of parasites in field populations of the bumble bee Bombus lucorum L. relates to variation in life history traits and reproductive performance. A total of thirty-six colonies was placed in accessible nest sites in the field and monitored at regular intervals throughout a season.
  • 2 Among the life history correlates, early nest foundation was strongly associated with large maximum colony size, old age and large size at maturity, and this in turn with successful production of males and queens, as well as with the number of sexuals produced. Overall, reproductive success was highly skewed with only five colonies producing all the queens. Sixteen colonies failed to reproduce altogether.
  • 3 The social parasite Psithyrus was abundant early in the Bombus colony cycle and preferentially invaded host nests with many first brood workers and thus disproportionately large size, i.e. those colonies that would otherwise be more likely to reproduce or produce (daughter) queens rather than males. To prevent nest loss, Psithyrus had to be removed soon after invasion. Therefore, the effects reported here can only be crude estimates.
  • 4 Parasitoid conopid flies are likely to cause heavy worker mortality when sexuals are reared by the colonies. Their inferred effect was a reduction in biomass that could be invested in sexuals as well as a shift in the sex ratio at the population level resulting from failure to produce queens. We suggest to group the inferred correlates into ‘early events’ surrounding colony initiation and social parasitism, and ‘late events’ surrounding attained colony size in summer and parasitism by conopid flies. Our evidence thus provides a heuristic approach to understand the factors that affect reproductive success of Bombus colonies.
  相似文献   

17.
18.
Microsatellite genotyping of workers from 13 species (ten genera) of stingless bees shows that genetic relatedness is very high. Workers are usually daughters of a single, singly mated queen. This observation, coupled with the multiple mating of honeybee queens, permits kin selection theory to account for many differences in the social biology of the two taxa. First, in contrast to honeybees, where workers are predicted to and do police each other''s male production, stingless bee workers are predicted to compete directly with the queen for rights to produce males. This leads to behavioural and reproductive conflict during oviposition. Second, the risk that a daughter queen will attack the mother queen is higher in honeybees, as is the cost of such an attack to workers. This explains why stingless bees commonly have virgin queens in the nest, but honeybees do not. It also explains why in honeybees the mother queen leaves to found a new nest, while in stingless bees it is the daughter queen who leaves.  相似文献   

19.
Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect‐pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variation within cultivated sunflowers and its effects on bee foraging behaviours. Over 2 years, we planted different sunflower inbred lines, including male‐fertile and male‐sterile lines, and measured nectar volume, nectar sugar concentration and composition, and corolla length. During bloom, we recorded visits by both managed honey bees and wild bees. We then examined consistency in relative nectar production by comparing field results to those from a greenhouse experiment. Sunflower inbred lines varied significantly in all floral traits, including the amount and composition of nectar sugars, and in corolla length. Both wild bee and honey bee visits significantly increased with nectar sugar amount and decreased with corolla length, but appeared unaffected by nectar sugar composition. While wild bees made more visits to sunflowers providing pollen (male‐fertile), honey bees preferred plants without pollen (male‐sterile). Differences in nectar quantity among greenhouse‐grown sunflower lines were similar to those measured in the field, and bumble bees preferentially visited lines with more nectar in greenhouse observations. Our results show that sunflowers with greater quantities of nectar sugar and shorter corollas receive greater pollination services from both managed and wild bees. Selecting for these traits could thus increase sunflower crop yields and provide greater floral resources for bees.  相似文献   

20.
1. Plants produce antimicrobial phytochemicals that can reduce growth and infectivity of parasites in animals. Pollinator parasites are transmitted between hosts that forage on shared flowers. Floral transmission directly exposes parasites to phytochemicals on floral surfaces and in nectar, both at flowers and, post‐ingestion, in the crop. This exposure could directly affect parasite transmission to new hosts. 2. Nectar chemical analyses were combined with field and cell culture experiments to test the effects of the floral phytochemical thymol on the transmission potential of the trypanosomatid gut parasite Crithidia in Bombus impatiens. First, thymol concentrations in Thymus vulgaris nectar were measured. Second, the effect of adding thymol to floral nectaries on parasite transmission to foraging bees was tested. Third, cell cultures were used to determine direct, dose‐dependent effects of short‐term thymol exposure on subsequent in vitro parasite growth. 3. A total of 26.1 ppm thymol was found in T. vulgaris nectar, five‐fold higher than previously documented in this species. However, addition of thymol to flowers of parasite‐inoculated inflorescences of four plant species did not affect acquisition of Crithidia infection during a foraging bout. Cell culture experiments showed that the thymol concentrations needed to reduce subsequent Crithidia growth by 50% (120 ppm) were 4.6‐fold higher than the highest detected nectar concentration. 4. Although thymol exposure can influence Crithidia viability, Crithidia are robust to the duration and magnitude of exposure encountered during floral foraging under natural conditions. These experiments suggest that any effects of thymol alone on Crithidia–host infection dynamics probably reflect indirect, possibly host‐mediated, effects of chronic thymol ingestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号